
Bifibrations of Polycategories and Classical
Linear Logic

Nicolas Blanco1

Computer Science Department
University of Birmingham

Birmingham, UK

Noam Zeilberger2

Laboratoire d’Informatique de l’École Polytechnique
Palaiseau, France

Abstract

The main goal of this article is to expose and relate different ways of interpreting the multiplicative fragment
of classical linear logic in polycategories. Polycategories are known to give rise to models of classical
linear logic in so-called representable polycategories with duals, which ask for the existence of various
polymaps satisfying the different universal properties needed to define tensor, par, and negation. We begin
by explaining how these different universal properties can all be seen as instances of a single notion of
universality of a polymap parameterised by an input or output object, which also generalises the classical
notion of universal multimap in a multicategory. We then proceed to introduce a definition of in-cartesian
and out-cartesian polymaps relative to a refinement system (= strict functor) of polycategories, in such a way
that universal polymaps can be understood as a special case. In particular, we obtain that a polycategory is
a representable polycategory with duals if and only if it is bifibred over the terminal polycategory �. Finally,
we present a Grothendieck correspondence between bifibrations of polycategories and pseudofunctors into
MAdj, the (weak) 2-polycategory of multivariable adjunctions. When restricted to bifibrations over � we
get back the correspondence between ∗-autonomous categories and Frobenius pseudomonoids in MAdj that
was recently observed by Shulman.

Keywords: Polycategories, linear logic, bifibrations, Grothendieck construction, Frobenius monoids

1 Introduction

In his early studies of the linguistic applications of Gentzen’s sequent calculus [16],

Lambek observed that the so-called “associative syntactic calculus” of [15] has a

natural semantic interpretation, where formulas are interpreted as bimodules of

rings and proofs of sequents A1, . . . , An → B are interpreted as multilinear maps

1 Email: n.blanco@pgr.bham.ac.uk
2 Email: noam.zeilberger@lix.polytechnique.edu

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 352 (2020) 29–52

1571-0661/© 2020 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2020.09.003

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:n.blanco@pgr.bham.ac.uk
mailto:noam.zeilberger@lix.polytechnique.edu
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2020.09.003
https://doi.org/10.1016/j.entcs.2020.09.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/

A1×· · ·×An → B. He mentions that one benefit of the sequent calculus presentation

is that it leads to a decision procedure for the existence of canonical mappings, and

notes that “it has already been observed by Bourbaki [Algèbre multilinéaire, 1948]

that linear mappings of the kind we are interested in are best defined with the help

of multilinear mappings”. These early observations later led Lambek to formally

introduce the definition of multicategories in [17], which generalise categories by

allowing morphisms to have multiple inputs, a paradigmatic example being the

multicategory of vector spaces and multilinear maps.

Szabo, a student of Lambek, introduced polycategories in [26], which further

generalise multicategories by allowing morphisms to have multiple outputs in addi-

tion to multiple inputs. One motivation for studying polycategories from the view

of proof theory is that they stand in the same relation to Gentzen’s classical sequent

calculus LK as multicategories stand in relation to the intuitionistic sequent calcu-

lus LJ. For example, the composition operation for morphisms in a polycategory is

typed just like the cut rule in classical sequent calculus. Lambek and Szabo’s work

was later revisited from the perspective of linear logic [9] by Cockett and Seely [6],

see also [4,13,7]. In particular, the notion of a representable (or two-tensor) polycat-

egory with duals provides a natural source of models for the multiplicative fragment

of classical linear logic. Representable polycategories with duals are equivalent to

the ∗-autonomous categories of Barr [2], but have the advantage that all of the

logical connectives can be defined by the existence of objects and (poly)morphisms

satisfying certain universal properties, rather than as algebraic structures subject

to coherence conditions.

This relation between ∗-autonomous categories and representable polycategories

with duals is analogous to the relation between monoidal categories and repre-

sentable multicategories (called monoidal multicategories by Lambek [17]), a rela-

tion studied carefully by Hermida [10]. Hermida noted certain analogies between the

theory of representable multicategories and the theory of fibred categories (cf. [10,

Table 1]), which he later made explicit by introducing a notion of (covariant) fi-

bration of multicategories [11], in such a way that a representable multicategory is

precisely the same thing as a multicategory fibred over the terminal multicategory

�. One interest of studying the more general notion of covariant fibration of multi-

categories E → B, where every multimorphism f : A1, . . . , An → B in B induces a

pushforward functor push〈f〉 : EA1×· · ·×EAn → EB, is that it models a much richer

class of structures coming from algebra and logic. For example, Hermida notes that

an algebra for an operad O can be identified with a discrete covariant fibration over

O, the latter seen as a one-object multicategory. The appropriate definition of con-

travariant fibration (and of bifibration) of multicategories was not addressed in [11].

However, there is a natural definition of contravariant fibration of multicategories,

made explicit in the work of Hörmann [12, A.2] and of Licata, Shulman, and Riley

[18], under which each multimorphism of the base multicategory induces a family

of pullback operations pull[f](i) : Eop
A1

× · · · × Eop
Ai−1

×Eop
Ai+1

× · · · × Eop
An

×EB → EAi ,

parameterised by the selection of the index 1 ≤ i ≤ n of a particular input object

Ai. One interesting feature of this definition is that monoidal biclosed categories in

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5230

the sense of Lambek [17] are equivalent to multicategories bifibred over �. More-

over, replacing the terminal multicategory by an arbitrary base multicategory leads

to a much richer framework for modelling a variety of substructural and modal log-

ics, as discussed by Licata et al. [18], and in a very similar spirit to Melliès and

Zeilberger’s work on type refinement and monoidal closed bifibrations (cf. [20,21]).

In particular, a recurring pattern is that some algebraic gadget in the base (e.g., a

monoid object) induces some logical structure (e.g., monoidal closure) on its fibre.

In this paper, we begin to develop a theory of bifibrations of polycategories,

guided by the principle that representable polycategories with duals (and hence

∗-autonomous categories) should be equivalent to polycategories bifibred over the

terminal polycategory �. One consequence of this theory is that we recover a nice

observation recently made by Shulman [23], that ∗-autonomous categories are equiv-

alent to (pseudo) Frobenius monoids in the (2-)polycategory of multivariable ad-

junctions. This will follow as a result of a general Grothendieck construction for

bifibrations of polycategories, in a similar manner to the pattern mentioned above.

Perhaps surprisingly, another one of our original motivations for developing this

theory was trying to better understand properties of the category FBan1 of finite

dimensional Banach spaces and contractive maps. It is a ∗-autonomous category

and it comes with a ∗-autonomous forgetful functor into FVect, but contrary to

the latter it is not compact closed. It provides a model of classical MALL based on

finite dimensional vector spaces that is not degenerate, in the sense that the positive

and negative fragments do not coincide. While the tensor, and more generally the

use of FBan1 as a model of intuitionistic MALL is well-documented (cf. [5]) we

could not find any mention of the par in the literature. In fact, this category

is one of the original examples of ∗-autonomous category provided by Barr in [1,

Ch. 4, 53–59], but without describing the tensor and par in FBan1 explicitly.

Yet, the structures needed to interpret them are popular in the study of Banach

spaces: ⊗ and ` correspond to different norms placed on the tensor product of

vector spaces called the projective and the injective (cross)norms, which have the

property of being extremal in all the well-behaved norms that can be put on the

tensor product. More specifically for any crossnorm ‖ − ‖ and any u ∈ A ⊗ B we

have ‖u‖A`B ≤ ‖u‖ ≤ ‖u‖A⊗B. We will see that this has a nice explanation from

the fact that the projective (⊗) norm and the injective (`) norm can be defined

as pushforwards and pullbacks, respectively, relative to the forgetful functor into

vector spaces.

2 Polycategories, linear logic, and universality

2.1 Polycategories

There are several different definitions of “polycategory” in the literature. We will

consider the following definition of (non-symmetric) polycategory due to Cockett

and Seely [6], which differs slightly from Szabo’s original definition [26] in imposing a

planarity condition on composition. The ideas in this paper may be transferred in an

almost straightforward way to the setting of symmetric polycategories (cf. [13,24]),

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 31

but we work with planar polycategories for the sake of greater generality.

Definition 2.1 A polycategory P consists of:

• a collection of objects Ob(P)

• for any pair of finite lists of objects Γ and Δ, a set P(Γ;Δ) of polymaps from Γ

to Δ denoted f : Γ → Δ (we refer to objects in Γ as inputs of f , and to objects

in Δ as outputs)

• for every object A, an identity polymap idA : A → A

• for any pair of polymaps f : Γ → Δ1, A,Δ2 and g : Γ′
1, A,Γ

′
2 → Δ′ satisfying

the restriction that [either Δ1 or Γ′
1 is empty] and [either Δ2 or Γ′

2 is empty], a

polymap g ◦A f : Γ′
1,Γ,Γ

′
2 → Δ1,Δ

′,Δ2

subject to appropriate unitality, associativity, and interchange laws whenever these

make sense:

idA ◦A f = f (1)

f ◦A idA = f (2)

(h ◦B g) ◦A f = h ◦B (g ◦A f) (3)

(h ◦B g) ◦A f = (h ◦A f) ◦B g (4)

h ◦B (g ◦A f) = g ◦A (h ◦B f) (5)

Remark 2.2 The notation ◦A for the composition can be ambiguous when there

are multiple copies of the same object. This can be dealt with more carefully by

indexing or labelling each input and output of a polymap. However, we will stick

with the more relaxed (albeit less precise) notation in this article, since it will never

lead to ambiguity in the examples.

Remark 2.3 We will sometimes find it useful to represent polymaps by string

diagrams. In this diagrammatic syntax, the composition operation may be depicted

schematically as follows:

A
fg

Γ′
1

Γ′
2

Δ′fΓ

Δ1

Δ2

The restriction on the composition operation that either Δ1 or Γ′
1 is empty and

that either Δ2 or Γ′
2 is empty is called a “planarity” condition, since in the picture

above it means that there are actually no crossing wires. In general, the string

diagram of a polymap corresponds to a planar tree with the edges oriented from

left to right, and the polycategory axioms correspond to natural isotopies between

diagrams. For example, the interchange law (4) states that when composing along

two different inputs, the order should not matter:

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5232

f

g

h

f

g

h=

This justifies drawing the two polymaps f and g above on the same level, as we will

sometimes do in examples.

2.2 Representable polycategories with duals

In this section we briefly recall the notion of representable (or two-tensor) polycat-

egory with duals, which has been used to model the multiplicative connectives of

classical linear logic.

Definition 2.4 Let Γ be a list of objects in a polycategory P. A tensor product of

Γ is an object
⊗

Γ equipped with a polymap mΓ : Γ → ⊗
Γ such that the opera-

tion P(Γ1,
⊗

Γ,Γ2; Δ) → P(Γ1,Γ,Γ2; Δ) of precomposition with mΓ is invertible.

Dually, for any list of objects Δ, a par product (or cotensor product) of Δ is an

object
˙

Δ equipped with a polymap wΔ :
˙

Δ → Δ such that the operation

P(Γ;Δ1,
˙

Δ,Δ2) → P(Γ;Δ1,Δ,Δ2) of postcomposition with wΔ is invertible.

Definition 2.5 A representable polycategory is a polycategory that has tensors and

pars of any finite lists of objects.

The definition of representable polycategory (called two-tensor-polycategory in

[6]) may be alternatively stated requiring only the existence of binary and nullary

tensors and pars, this being equivalent since the binary and nullary cases are suf-

ficient for building up tensor and pars of arbitrary finite lists of objects. In any

case, the definition implies that polymaps Γ → Δ of a representable polycategory

are in one-to-one correspondence with unary maps
⊗

Γ → ˙
Δ of its underlying

category. Conversely, Cockett and Seely proved that any linearly distributive cate-

gory (C,⊗, 1,`,⊥) induces a polycategory where the polymaps Γ → Δ are defined

as maps
⊗

Γ →˙
Δ in C, and that this extends to an equivalence of 2-categories

between representable polycategories and linearly distributive categories [6]. One

obtains ∗-autonomous categories by moreover asking for the existence of duals.

Definition 2.6 A right dual of an object A is an object A∗ equipped with polymaps

rcupA : · → A,A∗ and rcapA : A∗, A → · such that rcupA ◦A∗ rcapA = idA and

rcapA ◦A rcupA = idA∗ . A left dual of A is an object ∗A equipped with polymaps

lcupA : · → ∗A,A and lcapA : A, ∗A → · such that lcupA ◦∗A lcapA = idA and

lcapA ◦A lcupA = id∗A.

Definition 2.7 A polycategory is said to have duals if any object has a right and

a left dual.

Note that this definition may be simplified in the case of a symmetric polycate-

gory because left and right duals coincide in that case, although following Cockett

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 33

and Seely we have chosen to consider the more general situation. Cockett and Seely

proved that in the symmetric case, representable polycategory with duals coincides

with Barr’s notion of ∗-autonomous category [2], and that in the non-symmetric

case it coincides with a natural notion of “planar” ∗-autonomous category [6].

2.3 Representable polycategories with duals are ∗-representable polycategories

In this section we introduce a notion of “∗-representability” of a polycategory, and

prove that a polycategory is ∗-representable if and only if it is a representable

polycategory with duals.

Definition 2.8 A polymap u : Γ → Δ1, A,Δ2 is said to be universal in the output

A (or out-universal for short, or simply universal when there is no ambiguity),

written u : Γ → Δ1, A,Δ2 if for any polymap h : Γ1,Γ,Γ2 → Δ1,Δ,Δ2 such that

Γi = ∅ or Δi = ∅, there is a unique polymap h/u : Γ1, A,Γ2 → Δ such that

h = h/u ◦A u.

Dually, a polymap n : Γ1, A,Γ2 → Δ is universal in the input A (or in-universal),

written n : Γ1, A,Γ2 → Δ if for any polymap h : Γ1,Γ,Γ2 → Δ1,Δ,Δ2 such that

Γi = ∅ or Δi = ∅ there is a unique polymap n\h : Γ → Δ1, A,Δ2 such that

h = n ◦A n\h.
Graphically, the definitions are summarized in the following diagram:

u h/u

Δ1

Δ2

ΔΓ

Γ1

Γ2

h

n\h n

Δ1

Δ2

ΔΓ

Γ1

Γ2

h

(∗)

Remark 2.9 By extension, we say that A is an out-universal object (resp. in-

universal object) with respect to the surrounding context Γ → Δ1, ,Δ2

(resp. Γ1, ,Γ2 → Δ) if there is an out-universal polymap Γ → Δ1, A,Δ2 (resp. in-

universal polymap Γ1, A,Γ2 → Δ). For a fixed surrounding context, in-universal

and out-universal objects are unique up to unique isomorphism.

Definition 2.10 A polycategory is said to be ∗-representable if it has all in-

universal and out-universal objects, that is, if for any Γ, Δ1, Δ2 there is an object A

equipped with an out-universal polymap Γ → Δ1, A,Δ2, and similarly, for any Γ1,

Γ2, Δ there is an object A equipped with an in-universal polymap Γ1, A,Γ2 → Δ.

It may be argued that Definition 2.8 is a natural generalisation of the notion

of strong universal multimap in a multicategory [10], and Definition 2.10 the nat-

ural generalisation of representability from multicategories to polycategories (pace

Defn. 2.5). In Section 3, we will see that these concepts are special cases of more

general fibrational concepts. Like strong universal multimaps in a multicategory,

both in-universal and out-universal polymaps are closed under composition in an

appropriate sense.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5234

Proposition 2.11 In-universal polymaps compose, in the sense that if f :

Γ1, A,Γ2 → Δ1, B,Δ2 (in the notation of Definition 2.8) and g : Γ′
1, B,Γ′

2 → Δ′,
then g ◦B f : Γ′

1,Γ1, A,Γ2,Γ
′
2 → Δ1,Δ

′,Δ2. Similarly, out-universal maps com-

pose in the sense that if f : Γ → Δ1, B,Δ2 and g : Γ′
1, B,Γ′

2 → Δ′
1, C,Δ′

2, then

g ◦B f : Γ′
1,Γ,Γ

′
2 → Δ1,Δ

′
1, C,Δ′

2,Δ2.

Proof. As we will see later, this is a special case of Proposition 3.4. �

An immediate consequence of these definitions is that tensor products can be

considered as out-universal objects, and par products as in-universal objects.

Proposition 2.12 An object
⊗

Γ equipped with a polymap m : Γ → ⊗
Γ is a

tensor product of Γ iff m is out-universal (in its unique output). Dually, an object˙
Δ equipped with a polymap w :

˙
Δ → Δ is a par product of Δ iff w is in-

universal (in its unique input).

Somewhat more surprisingly, duals can also be characterised as either in-

universal or out-universal objects.

Proposition 2.13 Let A and A∗ be objects of a polycategory P. The following are

equivalent:

(i) there is an out-universal map rcupA : · → A,A∗

(ii) there is an in-universal map rcapA : A∗, A → ·
(iii) there is an out-universal map rcupA : · → A,A∗

(iv) there is an in-universal map rcapA : A∗, A → ·
(v) A∗ is the right dual of A

Proof. We refer the reader interested in this proof to the extended version of the

paper. 3

�

Remark 2.14 There is of course a similar result for left duals with lcupA and

lcapA.

Theorem 2.15 P is a representable polycategory with duals iff it is ∗-representable.

Proof. The right to left direction follows by propositions 2.12 and 2.13. For the

left to right direction we want to construct in-universal and out-universal objects

for any contexts just using ⊗, ` and ∗. Given contexts Γ,Δ1,Δ2 consider the

object A := Δ∗
1 ⊗

⊗
Γ⊗ ∗Δ2 where Δ∗

1 := B∗
1,n1

⊗ ...⊗B∗
1,1 for Δ1 = B1,1, ..., B1,n1

and similarly for ∗Δ2. This object comes with the following polymap, which is

a composition of out-universal polymaps along their out-universal objects. So by

proposition 2.11, it is out-universal.

3 Available at https://nicolas-blanco.github.io/publication/polybifibrations/.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 35

https://nicolas-blanco.github.io/publication/polybifibrations/

AΓ

⊗

⊗

⊗

Δ1

Δ2

Δ∗
1

∗Δ2

Similarly given Γ1,Γ2,Δ the object A := ∗Γ1 `˙Δ ` Γ∗
2 is in-universal with

in-universal polymap.

A Δ

Γ2

Γ1

Γ∗
2

∗Γ1

`
`

`

�

2.4 Examples

Example 2.16 Any linearly distributive category C gives a polycategory P(C)
called its underlying polycategory. It has the same objects as C and a polymap

f : A1, ..., Am → B1, ..., Bn in P(C) is a map f : A1 ⊗ ...⊗Am → B1` ...`Bn in C.
Example 2.17 In particular any monoidal category gives rises to a polycategory

with the same objects and with polymaps f : A1 ⊗ ...⊗Am → B1 ⊗ ...⊗Bn.

Example 2.18 The terminal polycategory � has one object ∗ and a unique arrow

sm,n : ∗m → ∗n for every arity m and co-arity n. Although this example is trivial,

we will see that it plays an important role in Section 3.

Example 2.19 Any category induces a polycategory with only unary maps. Con-

versely any polycategory has an underlying category obtained by forgetting about

the non-unary maps.

Example 2.20 From any multicategory M we can define two polycategories M+

and M− that have the same objects as M. The polymaps of M+ have always

exactly one output and correspond to multimaps in M while the polymaps in M−

have always exactly one input and correspond to multimaps in M reversed. Con-

versely from any polycategory we get two multicategories by restricting to polymaps

with exactly one output and (reversed) polymaps with exactly one input.

Example 2.21 There are polycategoriesVect and FVect of vector spaces (resp. fi-

nite dimensional vector spaces) and polylinear maps. Both of these can be seen

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5236

as the underlying polycategories of monoidal categories of vector spaces and linear

maps. FVect is a representable polycategory with duals while Vect is representable

but does not have duals in general. In fact the vector spaces that admit a dual are

precisely the finite dimensional ones.

Example 2.22 Free polycategories give examples of polycategories which are not

representable. Let a “poly-signature” Σ consist of a collection of types, together

with for any finite lists of types Γ and Δ, a set of operations Σ(Γ;Δ). The free poly-

category generated by Σ, denoted P(Σ), has types as objects, and polymaps given

by planar oriented trees with a boundary of free edges, whose nodes are labelled by

operations and whose edges are labelled by types subject to the constraints speci-

fied by the signature. For example, here is a depiction of the composite polymap

f ◦A (g ◦B f) : A,B,B → A,B in the free polycategory generated by the signature

containing a pair of types A and B and a pair of operations f : A,B → B and

g : B → A,A (in the diagram, the edges are implicitly oriented from left to right):

A

f g

fB

B

B

A

A

B

In general, composition is performed by grafting two trees along an edge, while the

identity on a type A is given by the trivial tree with no nodes and one oriented edge

labelled A. Observe this polycategory is not representable, for example there is no

polymap A,A → A⊗A.

Example 2.23 A one-object multicategory is commonly referred to as an operad,

while a one-object polycategory is also known as a dioperad [8]. For any poly-

category P and any object A ∈ P there is a dioperad called the endomorphism

dioperad of A, denoted EndP(A), defined as the full subpolycategory of P contain-

ing only the object A. It has one object and its polymaps correspond to polymaps

A, ..., A → A, ..., A in P.

2.5 Example of Banach spaces

In this example we focus on Banach spaces. Although the use of polycategories

is new most of the results are standard. For conciseness we omitted most of the

definitions and proofs here, although they are available in the extended version of

the paper. The standard theory of Banach spaces can be found in [22]. We will only

consider finite dimensional Banach spaces but this can be extended to the general

case by replacing ∗-autonomous structures by linearly distributive ones. This allows

us to skip the subtleties about completeness.

We fix a fieldK = R,C. FVect is the polycategory of finite dimensional K-vector

spaces and K-polylinear maps, where a polylinear map A1, ..., Am → B1, ..., Bn

corresponds to a linear map A1 ⊗ ...⊗Am → B1 ⊗ ...⊗Bn.

For a polylinear map f : A1, ..., Am → B1, ..., Bn and elements ai ∈ Ai and ϕj ∈
Bj we will write the scalar (ϕ1, ..., ϕn)f(a1, ..., am) := (ϕ1⊗...⊗ϕm)(f(a1⊗...⊗am)).

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 37

https://nicolas-blanco.github.io/publication/polybifibrations/

Continuous linear maps between Banach spaces correspond to bounded maps. This

can be generalised to polylinear maps.

Definition 2.24 A polylinear map f : A1, ..., Am → B1, ..., Bn between normed

vector spaces (Ai, ‖ − ‖Ai) and (Bj , ‖ − ‖Bj) is bounded if ∃K, ∀ai ∈ Ai, ∀ϕj ∈
B∗

j , |(ϕ1, ..., ϕn)f(a1, ..., am)| ≤ K
∏

i,j
‖ai‖Ai‖ϕj‖B∗j .

Proposition 2.25 A unary polymap f : A → B is bounded if it is bounded as a

linear map.

The smaller such K defines a norm on f and f is contractive when its norm is

smaller than 1.

Definition 2.26 A polylinear map f : A1, ..., Am → B1, ..., Bn between normed

vector spaces (Ai, ‖ − ‖Ai) and (Bj , ‖ − ‖Bj) is contractive if ∀ai ∈ Ai, ∀ϕj ∈
B∗

j , (ϕ1, ..., ϕn)f(a1 ⊗ ...⊗ am)| ≤ ∏

i,j
‖ai‖Ai‖ϕj‖B∗j

Definition 2.27 There are polycategories:

• Ban of Banach spaces and bounded polylinear maps

• FBan of finite dimensional Banach spaces and bounded polylinear maps

• Ban1 of Banach spaces and contractive polylinear maps

• FBan1 of finite dimensional Banach spaces and contractive polylinear maps

For objects in any of those polycategories to be isomorphic they need to be

isomorphic as vector spaces. (A, ‖ − ‖) and (A, ‖ − ‖′) are isomorphic in Ban and

FBan if ∃K,K ′, ∀a ∈ A, K‖a‖ ≤ ‖a‖′ ≤ K ′‖a‖. Such norms are called equivalent.

Two Banach spaces are isomorphic in Ban1 and FBan1 if their norms are equal.

In particular, this means that FBan is not an interesting polycategory since all the

norms on a given finite dimensional vector space are equivalent.

Proposition 2.28 FBan is equivalent to FVect.

On the other hand, FBan1 is a ∗-representable polycategory that does not come

from a compact closed category. It is one of the examples of ∗-autonomous categories

described in Barr’s original paper [1]. This is proved by using a characterisation

of a ∗-autonomous category as a symmetric monoidal closed category where the

canonical maps A → A∗∗ are isomorphisms. In particular, the induced norm for the

par is never discussed. We did not find any reference in the literature linking it to

the well-known injective norm in the theory of Banach spaces.

Definition 2.29 Let (A, ‖ − ‖A) and (B, ‖ − ‖B) be two Banach spaces. The

projective norm A⊗B and the injective norm A`B are the norms defined on the

vector space A⊗B by the following formulas:

‖u‖A⊗B := inf
u=

∑

i
ai⊗bi

‖ai‖A‖bi‖B ‖u‖A`B := sup
‖ϕ‖A∗ ,‖ψ‖B∗≤1

|(ϕ⊗ ψ)(u)|

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5238

These norms are known to be extremal among the set of well-behaved norms

that one can put on the tensor.

Definition 2.30 For Banach spaces (A, ‖ − ‖A) and (B, ‖ − ‖B), a norm ‖ − ‖
on A ⊗ B is a crossnorm if ∀a, b ∈ A × B, ‖a ⊗ b‖ ≤ ‖a‖A‖b‖B and ∀ϕ, ψ ∈
A∗ ⊗B∗, ‖ϕ⊗ ψ‖′ ≤ ‖ϕ‖A∗‖ψ‖B∗ with ‖ − ‖′ the dual norm.

Remark 2.31 It is equivalent to ask for equalities in the definition. A proof can

by found in [22].

Proposition 2.32 A norm is a crossnorm iff it makes A,B → A⊗B and A⊗B →
A,B contractive.

The injective and projective norms are crossnorms. The following property of

the injective and projective crossnorm made us consider the injective crossnorm as a

potential candidate for interpreting the par, and was one of our original motivations

for studying the notion of bifibration of polycategories developed in Section 3.

Proposition 2.33 Let ‖ − ‖ be a crossnorm then for any u ∈ A ⊗ B we have

‖u‖A`B ≤ ‖u‖ ≤ ‖A⊗B

Theorem 2.34 FBan1 is a ∗-representable polycategory with tensor, par and du-

ality defined above.

Remark 2.35 More than just a model of classical MLL, FBan1 is a model of

classical MALL. The additive connectives are given by the vector space A⊕B with

the norms ‖(a, b)‖1 :=
∑

i
‖a‖A + ‖b‖B and ‖(a, b)‖∞ := max(‖a‖A, ‖b‖B). These

norms are extremal among the p-norms.

3 Bifibrations of polycategories

In this section we introduce a notion of bifibration of polycategories, and prove

that a polycategory is a representable polycategory with duals just in case it is

bifibred over �. We find it convenient to begin by adapting some terminological

and notational conventions from the study of type refinement systems [20,21].

3.1 Definitions

Definition 3.1 A poly-refinement system is defined as a (strict) functor of poly-

categories p : E → B. Explicitly, p sends objects R ∈ E to objects p(R) ∈ B and

polymaps ψ : R1, ..., Rm → S1, ..., Sn in E to polymaps p(f) : p(R1), ..., p(Rm) →
p(S1), ..., p(Sn) in B in such a way that identities and composition are preserved

strictly. We write R � A (pronounced “R refines A”) to indicate that p(R) = A,

and extend this to lists of objects in the obvious way, writing Π � Γ to indicate that

Π = R1, . . . , Rn and Γ = A1, . . . , An for some R1 � A1, . . . , Rn � An. Finally, we

write ψ : Π =⇒
f

Σ to indicate that ψ is a polymap Π → Σ in E such that p(ψ) = f ,

with the implied constraint that f : Γ → Δ where Π � Γ and Σ � Δ.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 39

Remark 3.2 We will draw poly-refinement systems vertically. The top diagram

will be in E and the bottom one in B with objects and polymaps directly above

their image, e.g. preservation of composition is given by:

R

A

fψ

Π′
1

Π′
2

Σ′ϕΠ

Σ1

Σ2

fg

Γ′
1

Γ′
2

Δ′fΓ

Δ1

Δ2

E

B

Definition 3.3 Fix p : E → B a poly-refinement system and ψ : Π1, R,Π2 =⇒
g

Σ

a polymap in E with R � A. ψ is in-cartesian in R (relative to p), written ψ :

Π1, R,Π2 =⇒
g

Σ, if for any polymap ξ : Π1,Π,Π2 =⇒
g◦Af

Σ1,Σ,Σ2, satisfying the

usual planarity condition that either Πi = ∅ or Σi = ∅ for each i = 1, 2, there exists

a unique polymap ψ\ξ : Π =⇒
f

Σ1, R,Σ2 such that ξ = ψ ◦R (ψ\ξ).
Dually, ϕ : Π =⇒

f
Σ1, S,Σ2, with S � B, is out-cartesian in S, written ϕ :

Π =⇒
f

Σ1, S,Σ2, if for any polymap ξ : Π1,Π,Π2 =⇒
g◦Bf

Σ1,Σ,Σ2, satisfying the

planarity condition that either Πi = ∅ or Σi = ∅, there is a unique polymap ξ/ϕ :

Π1, S,Π2 =⇒
g

Σ such that ξ = (ξ/ϕ) ◦S ϕ.

Graphically, the definitions are summarised by the following diagram:

p

ψ\ξ ψ

Σ1

Σ2

ΣΠ

Π1

Π2

ξ

f g

Δ1

Δ2

ΔΓ

Γ1

Γ2

g ◦A f

E

B

ϕ ξ/ϕ

Σ1

Σ2

ΣΠ

Π1

Π2

ξ

f g

Δ1

Δ2

ΔΓ

Γ1

Γ2

g ◦B f

in-cartesian out-cartesian

(†)

Proposition 3.4 In-cartesian polymaps compose, in the sense that if ϕ :

Π1, R,Π2 =⇒
g

Σ1, S,Σ2 and ψ : Π′
1, S,Π

′
2 =⇒

f
Σ′ then ψ ◦S ϕ : Π′

1,Π1, R,Π2,Π
′
2 =⇒
g◦Bf

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5240

Σ1,Σ
′,Σ2. Similarly, out-cartesian maps compose in the sense that if ϕ :

Π =⇒
g

Σ1, S,Σ2 and ψ : Π′
1, S,Π

′
2 =⇒

f
Σ′
1, T ,Σ

′
2 then ψ ◦S ϕ : Π′

1,Π,Π′
2 =⇒

g◦Bf

Σ1,Σ
′
1, T ,Σ

′
2,Σ2.

Definition 3.5 A poly-refinement system p : E → B is said to be a pull-fibration

if for any f : Γ1, A,Γ2 → Δ in B and any Π1 � Γ1, Π2 � Γ2, and Σ � Δ

there is an object pull[f](Π1 Π2; Σ) � A together with an in-cartesian polymap

Π1,pull[f](Π1 Π2; Σ),Π2 =⇒
f

Σ. Dually, p is said to be a push-fibration if for

any f : Γ → Δ1, B,Δ2 in B and any Π � Γ, Σ1 � Δ1, and Σ2 � Δ2 there

is an object push〈f〉(Π;Σ1 Σ2) � B together with an out-cartesian polymap

Π =⇒
f

Σ1,push〈f〉(Π;Σ1 Σ2),Σ2. Finally, p is said to be a bifibration if it is both

a pull-fibration and a push-fibration.

Remark 3.6 When pulling along a map f : A → Δ with only one input, we will

write pull[f](Σ) as shorthand for pull[f](; Σ). Similarly when pushing along a

map f : Γ → A, we will write push〈f〉(Γ) for push〈f〉(Γ;).

3.2 ∗-autonomous categories as bifibrations of polycategories

Comparing the diagram (†) with diagram (∗), the following statements are self-

evident.

Proposition 3.7 Let P be a polycategory. A polymap u : Γ → Δ1, A,Δ2 (resp. u :

Γ1, A,Γ2 → Δ) is out-universal (resp. in-universal) in A iff it is out-cartesian

(resp. in-cartesian) with respect to the unique functor P → � into the terminal

polycategory.

Proposition 3.8 P is a ∗-representable polycategory iff P → � is a bifibration of

polycategories.

We then derive the following as a corollary of Theorem 2.15 and Cockett and

Seely’s connection between ∗-autonomous categories and representable polycate-

gories with duals.

Theorem 3.9 There is an equivalence between planar ∗-autonomous categories and

bifibrations over the terminal polycategory �.

This correspondence may be extended in a straightforward way to the case of or-

dinary (symmetric) ∗-autonomous categories by considering symmetric bifibrations,

that is, symmetric poly-refinement systems (= functors of symmetric polycategories

that strictly preserve identities, composition, and the symmetry actions) which are

bifibrations in the above sense. We also expect that this result may be stated more

precisely as an equivalence of 2-categories, but we leave this to future work.

One application of Theorem 3.9 is that it provides a way of decomposing

a ∗-autonomous structure on a category, using elementary facts about cartesian

polymaps.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 41

Proposition 3.10 For p : P → E and q : E → B poly-refinement systems and

ψ : Π1, R,Π2 =⇒
g

Σ a polymap in P, if ψ is p-in-cartesian in R � A and g is

q-in-cartesian in A � X then ψ is q ◦ p-in-cartesian in R � X.

Remark 3.11 Similarly, a p-out-cartesian polymap over a q-out-cartesian polymap

is (q ◦ p)-out-cartesian.
Proposition 3.12 Let p : E → B be a poly-refinement system, and suppose that B
is ∗-representable. If E has all in-cartesian liftings of in-universal polymaps and all

out-cartesian liftings of out-universal polymaps then E is a ∗-representable polycat-

egory.

Proof. By Propositions 3.7 and 3.10. �

3.3 Additional examples

Example 3.13 Let E and B be ordinary categories considered as degenerate poly-

categories with only unary co-unary maps (i.e., polymaps of arity and co-arity 1),

and let p : E → B be an ordinary (strict) functor. Then p is a pull-fibration,

push-fibration or bifibration just in case it is an ordinary (Grothendieck) fibration,

opfibration or bifibration. Similarly, if E and B are multicategories considered as

polycategories with only co-unary maps, then p is a push-fibration just in case it

is a covariant fibration of multicategories in the sense of Hermida [11], and more

generally the polycategorical notions of pullback and pushforward coincide with the

multicategorical ones described in [12,18].

Example 3.14 The forgetful functor Cat∗ → Cat from the category of pointed

(small) categories to the category of (small) categories is an opfibration of 2-

categories. The pushforward of (A, A) along F : A → B is (B, F (A)). Similarly

the forgetful functor Adj∗ → Adj of pointed adjunctions is a bifibration of 2-

categories. Here a pointed adjunction between pointed categories (A, A) and (B, B)

consist of an adjunction F � G : A → B and a morphism f : F (A) → B in B -

or equivalently of a morphism g : A → G(B) in A. The pushforward is given by

the image by F while the pullback is given by the image of G. While working on

the polycategorical Grothendieck correspondences we will define the 2-polycategory

of multivariable adjunction MAdj. It also has a pointed variant MAdj∗. The

forgetful functor induced is a bifibration of 2-polycategories.

3.4 Forgetful functor from Banach spaces

We will use proposition 3.10 to derive the ∗-representability of the polycategory

FBan1 defined in 2.5. In order to do that we consider the forgetful functor

FBan1 → FVect. We want to characterise the polymaps that admit cartesian

liftings. Due to lack of space, the proofs will be omitted from this version of the

paper.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5242

Definition 3.15 Given f : A1, ..., Am → B1, ..., Bn and norms ‖ − ‖Ai , ‖ − ‖Bj

for all i �= k and all j, we define a function ‖ − ‖f : Ak → K by ‖x‖f :=

sup
ai,ϕj 	=0

|(ϕ1,...,ϕn)f(a1,...,x,...,am)|∏

i�=k,j

‖ai‖Ai
‖ϕj‖B∗

j

Proposition 3.16 ‖ − ‖f is a pseudonorm on Ak.

We want to characterise the polymaps for which this is a norm.

Definition 3.17 f is injective in Ak - or Ak-injective - if (∀ai, f(a1, ..., x, ..., am) =

0) ⇒ x = 0

Definition 3.18 The Ak-kernel of f is the set KerAk
(f) := {x ∈

Ak | f(a1, ..., x, ..., am) = 0 ∀ai}.
The Ak-kernel of f forms a vector space. f is Ak-injective if its Ak-kernel is triv-

ial. Furthermore we have that KerAk
(f) = {x ∈ Ak | (ϕ1, ..., ϕn)f(a1, ..., x, ..., am) =

0 ∀ai∀ϕj} by linearity of
⊗

j
ϕj .

Remark 3.19 A polylinear map f : A → B is A-injective if it is injective as a

linear map.

Proposition 3.20 For f , ‖−‖Ai and ‖−‖Bj , ‖−‖f is a norm iff f is Ak-injective.

It is worth noticing that this only depends on f and not on any properties of

the norms.

Proposition 3.21 For f Ak-injective and norms ‖− ‖Ai , ‖− ‖Bj , the norm ‖− ‖f
makes f contractive.

This norm defines a pullback in Ban1,FBan1.

Proposition 3.22 Given a B-injective polylinear map g : Γ′
1, A,Γ

′
2 → Δ′ with lists

Γ′
i = A′

i,1, ..., A
′
i,m′i

and Δ′ = B′
1, ..., B

′
n we fix families of norms ‖−‖Γ′i = (‖−‖A′i,j)

and ‖−‖′Δ = (‖−‖B′i). Then the pullback is given by pull[g]((Γ′
1, ‖−‖Γ′1) (Γ′

2, ‖−
‖Γ′2); (Δ, ‖ − ‖Δ)) = (A, ‖ − ‖g).

So we have in-cartesian liftings of any polylinear map that is injective in the

input considered. The injectivity condition is only needed for ‖ − ‖f to be a norm,

otherwise it is still a seminorm, i.e., ‖x‖f ≥ 0 for all x and ‖0‖f = 0, but ‖x‖f = 0

does not imply x = 0.

Corollary 3.23 There is a polycategory FBanps
1 of finite dimensional complete

seminormed vector spaces and contractive polylinear maps that comes with a forget-

ful functor that is pull-fibred.

Now we want to determine which polylinear maps have out-cartesian liftings.

Definition 3.24 For f : Γ → Δ1, A,Δ2 and families of norms ‖−‖Γ, ‖−‖Δ1 , ‖−‖Δ2 ,

we define a function ‖−‖f : Bk → K̄ where K̄ is the completion of K, i.e., we add a

point at infinity. It is given by ‖y‖f := inf
y=

∑

i
(−→ϕ 1,i,idA,−→ϕ 2,i)f(

−→a i)

∑

i
‖−→ϕ 1,i‖‖−→ϕ 2,i‖‖−→a i‖

where the sum is over all the decompositions of y.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 43

Proposition 3.25 ‖ − ‖f is an extended norm, i.e., a norm with value in K̄.

Definition 3.26 f : Γ → Δ1, A,Δ2 is A-surjective if ∀y ∈ A, ∃−→ϕ 1,i,
−→ϕ 2,i,

−→a i, y =∑

i
(−→ϕ 1,i, idA,

−→ϕ 2,i)f(
−→a i).

The A-image of f is the set ImA(f) := {∑
i
(−→ϕ 1,i, idA,

−→ϕ 2,i)f(
−→a i)}.

Proposition 3.27 ImA(f) forms a vector space. f is A-surjective iff ImA(f) = A.

Remark 3.28 A linear map is B-surjective iff it is surjective. Indeed if for y ∈ B

there are xi such that y =
∑

i
f(xi) then by linearity y = f(

∑

i
xi).

Proposition 3.29 For f and families of norms ‖ − ‖Γ, ‖ − ‖Δ1 , ‖ − ‖Δ2, ‖ − ‖f is

a norm iff f is A-surjective.

Proposition 3.30 For f A-surjective and families of norms as usual, ‖−‖f makes

f contractive.

This norm defines a pushforward on Ban1,FBan1.

Proposition 3.31 For f : Γ → Δ1, A,Δ2 a A-surjective polylinear map and the

usual families of norms, we get the pushforward push〈f〉(Γ;Δ1 Δ2) = (A, ‖−‖f).
So we can take the out-cartesian lifting of any polymap that is surjective in the

considered output.

Corollary 3.32 There are polycategories FBanex
1 and FBanex,ps

1 of f.d. extended

normed/seminormed vector spaces and polylinear maps with forgetful functors that

are push-fibred and bifibred respectively.

When considering FBan1 even without semi-/extended norms, there are still

enough cartesian polymaps to lift the ∗-representability of FVect.

Proposition 3.33 In FVect, the universal polylinear maps mA,B : A,B → A⊗B,

wA,B : A⊗ B → A,B and rcapA : A∗, A → · are A⊗ B-surjective, A⊗ B-injective

and A∗-injective.

Corollary 3.34 FBan1 is ∗-representable.
Remark 3.35 We get the projective, injective and dual norm using the norms

above: ‖− ‖A⊗B = ‖− ‖mA,B , ‖− ‖A`B = ‖− ‖wA,B and ‖− ‖A∗ = ‖− ‖rcapA . The
fact that the projective and injective crossnorms are extremal follows directly from

the factorisation properties of the cartesian polymaps mA,B and wA,B.

3.5 Frobenius monoids

Definition 3.36 In a polycategory P a Frobenius monoid is an object A equipped

with a unique polymap (m,n)A : Am → An for each m,n ∈ N such that (1, 1)A =

idA and these polymaps are stable under composition.

Proposition 3.37 Equivalently a Frobenius monoid in P is a functor F : � → P.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5244

Proof. The Frobenius monoid corresponds to F (∗) and the polymaps (m,n)F (∗) to
F ((m,n)). The properties needed on the polymaps are exactly functoriality of F .�

Remark 3.38 For P representable with ⊗ = `, this reduces to the unbiased defi-

nition of a Frobenius monoid in a monoidal category.

Definition 3.39 Given a poly-refinement system p : E → B and a Frobenius

monoid A in B the polyfiber of p over A, noted p−1(A) is the subcategory of E
whose objects and polymaps are sent by p to A and the (m,n)A.

Proposition 3.40 p−1(A) is equivalent to the following pullback:

p−1(A) E

� B

!

�
p

A

where A : � → B is the functor associated to the object

A.

Proposition 3.41 Given a poly-refinement system p : E → B and a functor s :

B′ → B, let E ×B B′ be the pullback.

E ×B B′ E

B′ B

π1

π2

�
p

s

For a polymap f : Γ1, A,Γ2 → Δ in B′ and lists of objects Π1,Π2,Σ in E ×B B′

lying over Γ1,Γ2 and Δ, if there is a pullback pull
s(A)
s(f) (π1(Π1)|π1(Π2);π1(Σ)) in E

then there is a pullback pullAf (Π1|Π2; Σ) in E ×B B′.

Proof. E ×B B′ is the polycategory whose objects are pairs of objects (E,B′) of E
and B such that p(E) = s(B′) and whose polymaps are pairs of polymaps (f, b′)
such that p(f) = s(b′).

Given a polymap f : Γ1, A,Γ2 → Δ in B′ and lists of objects

(Π1,Γ1), (Π2,Γ2), (Σ,Δ) in E ×B B′ from a pullback pull
s(A)
s(f) (Π1|Π2; Σ) in E

with in-cartesian polymap ϕ : Π1, pull
s(A)
s(f) (Π1|Π2; Σ),Π2 → Σ we get a pull-

back pullAf ((Π1,Γ1)|(Π2,Γ2); (Σ,Δ)) := (pull
s(A)
s(f) (Π1|Π2; Σ), A) with in-cartesian

polymap (ϕ, f).

�

Remark 3.42 Similarly if the pushforward exists in E it exists in E ×B B′.

Corollary 3.43 Given a poly-refinement system p : E → B and a Frobenius monoid

(A, {(m,n)A}) in B if all in-cartesian and out-cartesian polymaps of (m,n)A exist

then p−1(A) is ∗-representable.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 45

4 Grothendieck correspondences

We should emphasise that the results in this section, and in particular the poly-

categorical Grothendieck correspondences, are conditioned on having a theory of

weak 2-polycategories. To the extent of our knowledge such a theory has not been

carefully worked out yet. We leave it as future work to craft this theory. Meanwhile

we will describe the properties we assume to hold for weak 2-polycategories after

recalling the usual notion of categorical Grothendieck correspondences.

4.1 Categorical Grothendieck correspondences

By “Grothendieck correspondence”, we refer to the equivalence between fibrations

and indexed categories, as well as a range of several other similar correspondences

(the first was originally described by Bénabou [3]):

• Functor E → B ←→ lax normal functor Bop → Dist

• Fibration E → B ←→ pseudofunctor Bop → Cat

• Opfibration E → B ←→ pseudofunctor Bop → Catop (or equivalently B → Cat)

• Bifibration E → B ←→ pseudofunctor Bop → Adj

Here Dist is the bicategory whose objects are small categories and 1-cells A −�−→
B are distributors, i.e., functors A × Bop → Set, with 2-cells given by natural

transformations. While Cat (respectively Adj) is the (strict) 2-category whose

objects are small categories, 1-cells are functors (resp. adjunctions), and 2-cells are

natural transformations. Notice that Cat, Catop and Adj are all subbicategories

of Dist corresponding to distributors A −�−→ B that are representable in A, in B, and

in both, respectively.

4.2 Polycategorical Grothendieck correspondences

We want to extend the previous correspondences to polycategories as follows:

• Poly-refinement system E → B ←→ lax normal functor Bop → Dist

• Bifibration E → B ←→ Pseudofunctor Bop → MAdj

where Dist is the weak 2-polycategory of sets and multivariable distributors and

MAdj is the weak 2-polycategory of sets and multivariable adjunctions. Like in the

categorical case, MAdj is a sub-2-polycategory of Dist consisting of distributors

that are representable in each of their variables. It is worth noting that for us (0, 0)-

adjunctions will be sets, in contrast to the original definition in [24] where they are

taken to be trivial. Shulman discusses both possibilities, but chooses the latter to

turn MAdj into a strict 2-polycategory, whereas the former fits more naturally in

our framework at the price of MAdj being a weak 2-polycategory.

4.2.1 About 2-polycategories

As stated above, to express these correspondences we need some theory of weak

2-polycategory, where by 2-polycategory we mean that the 1-cells can have multiple

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5246

inputs and outputs but not the 2-cells. In this paper we only assume that there are

weak 2-polycategories Dist and MAdj and that lax functors and pseudofunctors

behave in the expected way. More generally we suspect that weak 2-polycategories

and ∗-autonomous bicategories will be connected in a way such that the results

of this paper can be relaxed to this setting. In particular, any compact closed

bicategory – as defined by Mike Stay in [25] – should be a ∗-autonomous bicategory,

and by extension a weak 2-polycategory. This would entail that Dist is weak 2-

polycategory.

4.2.2 Distributors and multivariable adjunctions

In this section we introduce the weak 2-polycategories Dist and MAdj. We prove

that a multivariable adjunction can be understood as a representable distributor.

Definition 4.1 Dist is the weak 2-polycategory that has as objects categories,

that has as polymaps f : A1, ..., Am → B1, ..., Bn distributors f : A1 × ... × Am −�−→
B1 × ...×Bn and that has as 2-cells natural transformations.

Definition 4.2 Given categories A1, ..., Am, B1, ..., Bn, a (m,n)-adjunction or mul-

tivariable adjunction (Fl)1≤l≤n � (Gk)1≤k≤m : A1, ..., Am → B1, ..., Bn consists of

the following data:

• functors Fl :
∏

i
Ai ×

∏

j 	=l

Bop
j → Bl for each l

• functors Gk :
∏

i 	=k

Aop
i ×∏

j
Bj → Ak for each k

• natural isomorphisms Bl(Fl(a1, ..., am, b1, ..., bn), bl) �
Ak(ak, Gk(a1, ..., am, b1, ..., bn)) for any k, l

Example 4.3 A (1,1)-adjunction between A,B is a pair of functor F : A → B and

G : B → A such that B(F (a), b) = A(a,G(b)). It is just a usual adjunction.

Example 4.4 Let (C,⊗, I) be a biclosed monoidal category. By definition (A⊗−)

has a right adjoint A � − and (− ⊗ B) has a right adjoint − › B. We get

three functors ⊗ : C × C → C, �: Cop × C → C and ›: Cop × C → C such that

C(A⊗B,C) � C(B,A � C) � A, C › B, i.e. a (2, 1)-adjunction (⊗) � (�,›).

Proposition 4.5 A (m,n)-adjunction (Fl)1≤l≤n � (Gk)1≤k≤m : A1, ..., Am →
B1, ..., Bn is the same thing as a distributor P : A1 × ... × Am −�−→ B1 × ... × Bn

that is representable in each of its variables.

Proof. From any of the Fl we can define a distributor Pl : A1 × ... × Am −�−→
B1 × ...×Bn representable in Bl by Pl(−,−) := Bl(Fl(−),−). Similarly we can get

distributors representable in Ak from the functorsGk by P k(−,−) := Ak(−, Gk(−)).

But all of these distributors are naturally isomorphic by definition of a multivariable

adjunction.

Conversely given a distributor P : A1 × ...×Am −�−→ B1 × ...×Bn, representabil-

ity in the Ak and Bl produce functors Gk with natural isomorphisms P (−,−) �
Ak(−, Gk(−)) and functors Fl with natural isomorphisms P (−,−) � Bl(Fl(−),−).�

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 47

4.2.3 Fibres of a poly-refinement system and distributors between them

In the following we fix a poly-refinement system p : E → B. We define a lax normal

functor ∂p : Bop → Dist by considering the fibres of p like in the categorical case.

We will use the convention that for any Γ = A1, ..., An, p
−1(Γ) := p−1(A1) × ... ×

p−1(Am). ∂p assigns to each object its fibre ∂p(B) := p−1(B) = {S ∈ E | p(S) = B}.
To a polymap f : Δ → Γ in Bop, that we will equivalently consider as a polymap

f : Γ → Δ in B, is assigned a distributor between the fibres ∂p(f) : p−1(Δ) ×
p−1(Γ)op → Set. This distributor consists of the set of polymaps lying over f acted

on by pre- and post-composition. More precisely, given lists of objects in the fibres

Π = (R1, ..., Rm) � Γ = (A1, ..., Am),Σ = (S1, ..., Sn) � Δ = (B1, ..., Bn) we define

the action of the distributor ∂p(f) on these objects by ∂p(f)(Σ,Π) := {ϕ : Π →
Σ | p(ϕ) = f}. And given lists of polymaps in the fibre

−→
ψ = (ψi : R

′
i =⇒
idAi

Ri)1≤i≤m

and
−→
ξ = (ξj : Sj =⇒

idBj

S′
j)1≤j≤n we get ∂p(f)(

−→
ξ ,

−→
ψ) :=

−→
ξ ◦ − ◦ −→ψ .

This can be represented graphically.

ψ1

ψm

ξ1

ξn

−...
...

It can be noted that the polymaps in the fibre have one-object domain and

codomain. This is because all the polymaps in the fibre lies over the identity

polymap in the base.

This is summarized in the following definition.

Definition 4.6 For a poly-refinement system p : E → B we define the lax normal

functor ∂p : Bop → Dist by:

• For any B ∈ B, ∂p(B) := {S ∈ E | p(S) = B}
• For any f : Γ → Δ in B, ∂p(f) : p−1(Δ) −�−→ p−1(Γ) defined by:

· For any Π � Γ,Σ � Δ, ∂p(f)(Σ,Π) := {ϕ : Π → Σ | p(ϕ) = f}
· For any

−→
ψ = (ψi : R′

i =⇒
idAi

Ri)1≤i≤m and
−→
ξ = (ξj : Sj =⇒

idBj

S′
j)1≤j≤n,

∂p(f)(
−→
ξ ,

−→
ψ) =

−→
ξ ◦ − ◦ −→ψ

The proof that this defines a lax normal functor is similar to the categorical

one with some extra bookkeeping because of the presence of contexts of inputs and

outputs.

Now suppose that p is a bifibration and consider a polymap f : Γ1, A,Γ2 → Δ.

We define a functor pull[f]A : p−1(Δ)×p−1(Γ1)
op×p−1(Γ2)

op → p−1(A) by sending

any Σ � Δ,Πi � Γi to pull[f](Π1 Π2; Σ). From lists of polymaps
−→
ψ1,

−→
ψ2 and

−→
ξ we

get a polymap pull[f](Π1 Π2; Σ) → pull[f](Π′
1 Π′

2; Σ
′) by using the factorisation

property of pull[f](Π′
1 Π′

2; Σ
′). It is represented in Figure 1 where the two big

blank boxes are the in-cartesian polymaps associated to the pullbacks.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5248

p

E

B

pull[f](Π1 Π2; Σ)
−→
ξ Σ′

−→
ψ 1

−→
ψ 2

Π′
1

Π′
2

f Δ

Γ1

Γ2

A

Σ′

Π′
2

pull[f]A(
−→
ξ ,

−→
ψ1,

−→
ψ2)pull[f](Π1 Π2; Σ)

Π1

Π2

Σ

Π′
1

=

pull[f](Π′
1 Π′

2; Σ
′)

f Δ

Γ1

Γ2

A

Fig. 1. Polymap pull[f](Π1 Π2; Σ) → pull[f](Π′1 Π′2; Σ
′)

By the universal property of the pullback we can link ∂p(f) and pull[f]A in the

following way.

∂p(f)(Σ,Π1,−,Π2) = {ϕ : Π1,−,Π2 → Σ | p(ϕ) = f}
= {ψ : − → pull[f](Π1 Π2; Σ) | p(ψ) = idA}
= Homp−1(A)(−,pull[f]A(Σ,Π1,Π2))

This makes ∂p(f) representable in A. Since by definition of a bifibration we

get such a pull-functor for each of the inputs of f and some similar push-functors

for the outputs this makes ∂p(f) a multivariable adjunction. Since it is true for

any polymap f in Bop we get that ∂p factors through MAdj. Finally the fact that

cartesian polymaps compose makes ∂p : Bop → MAdj a pseudofunctor.

4.2.4 Polycategorical Grothendieck-Bénabou construction

Conversely, given a lax normal functor F : Bop → Dist we construct its polycategory

of elements
∫
F .

Definition 4.7 The polycategory of elements
∫
F has:

• for objects, pairs (A,R) with A ∈ B and R ∈ F (A)

• for polymaps (f, ϕ) : (Γ,Π) → (Δ,Σ), pairs of a polymap f : Γ → Δ in B and an

element ϕ ∈ F (f)(Σ,Π)

• for identities (idA, idR)

• for composition (g, ψ) ◦(A,R) (f, ϕ) = (g ◦A f, μ((̃ϕ, ψ))) where:

· (̃ϕ, ψ) ∈ (F (g) ◦F (A) F (f))(Σ1,Σ
′,Σ2,Π

′
1,Π,Π′

2) is the canonical element in-

duced by the elements ϕ ∈ F (f)(Σ1, R,Σ2,Π) and ψ ∈ F (g)(Σ′,Π′
1, R,Π′

2)

· μ : F (g) ◦F (A) F (f) ⇒ F (g ◦A f) is the natural transformation giving lax

functoriality of F

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 49

The fact that this is a polycategory follows from the coherence laws of F . Fur-

thermore it can be proven that these constructions are inverse to each other using

the same arguments as for the categorical constructions.

4.3 Frobenius pseudomonoids and Classical Linear Logic

Like in Section 3.5 there are different ways to define a Frobenius pseudomonoid.

The most convenient in our case will be to think of those as (the image of) a

pseudofunctor out of �.

Definition 4.8 A Frobenius pseudomonoid in a 2-polycategory C is a pseudofunc-

tor F : � → C.
Using the polycategorical Grothendieck correspondence we recover the result re-

cently announced by Shulman that Frobenius pseudomonoids in MAdj are equiv-

alent to ∗-autonomous categories.

Theorem 4.9 (Shulman [23]) There is a correspondence between Frobenius

pseudomonoid and ∗-autonomous categories.

Proof. Using the polycategorical Grothendieck correspondence, pseudofunctors

� → MAdj correspond to bifibrations p : E → �. Then using theorem 3.9 these

correspond to representable ∗-polycategories. �

Remark 4.10 Given a Frobenius monoid (A, (m,n)A) in B and a lax normal func-

tor F : B → Dist. The polyfiber of A relatively to the functor
∫
F such as defined

in section 3.5 is given by the image of A (and the polymaps (m,n)A) by F . If F

is pseudo on these polymaps this forms a Frobenius pseudomonoid in Dist. When

the images of these polymaps are representable in all their variables this factors

through MAdj giving a ∗-representable polycategory. This is the another way of

understanding the result 3.43.

5 Conclusion and Further work

In this article we developed some of the theory of bifibred polycategories and pro-

vided examples of applications.

We started by recasting the notion of representable polycategory with duals as

the equivalent notion of ∗-representable polycategory, in a way that made it clear

that it is a special kind of bifibred polycategory. We then explored examples of how

this connection can be used to lift the connectives ⊗, ` and (−)∗ from the codomain

to the domain of a functor of polycategories if this functor has good fibrational

properties. Since ∗-representable polycategories are equivalent to ∗-autonomous

categories this helped us to analyse some models of classical MLL from a new

perspective.

In the example of Banach spaces the base polycategory is induced by a compact

closed category. Compact closed categories are known to provide good models

for many different kinds of systems and processes, and have a simple graphical

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5250

language of string diagrams. In future work we would like to explore in more

detail examples of this sort. It would be interesting to study functors p : E → B
where B is the underlying polycategory of a compact closed category modelling

systems and processes while E is the underlying polycategory of a ∗-autonomous

category modelling properties of those systems and processes. An example that is

closely related is the work on causal structures developed in [14]. In this paper

the authors construct a ∗-autonomous category of systems and causal processes

out of any compact closed category of systems and processes with some specific

discard maps. The ∗-autonomous structure of the causal category can be lifted

along the forgetful functor in the same way as we have done for Banach spaces.

In fact these are instances of a generic construction that assigns to any compact

closed category a ∗-representable polycategory whose objects consist of objects of

the original category together with a set of states (or global elements) with some

closure condition. In the case of causal structures, the set corresponds to the causal

states while in the case of the Banach spaces it corresponds to the (sub)normalised

states, i.e., to the unit sphere (or ball). We can think of these sets as expressing

some properties about the systems by specifying the states that satisfy it.

Multicategories are highly asymmetrical in their treatment of inputs and out-

puts. Polycategories restore this symmetry, which makes them an elegant object

of study, but also a somewhat more complex object and more difficult to find in

nature. Just as a ∗-autonomous category can be decomposed into a pair of monoidal

categories related by a monoidal duality, we believe it is worth trying to decompose

the notion of bifibration of polycategories into a pair of fibrations of multicategories

related by duality. Such an analysis would likely be in the spirit of Cockett and

Seely’s polarized polycategories [7] and Melliès’ chiralities [19], and perhaps related

to the notion of bifibration chirality introduced in [21].

Acknowledgements

We thank the anonymous MFPS reviewers, as well as Mike Shulman for several

very helpful comments made during the online edition of MFPS 2020.

References

[1] Barr, M., “*-Autonomous Categories,” Springer-Verlag, Berlin, Heidelberg, 1979.

[2] Barr, M., *-autonomous categories and linear logic, MSCS 1 (1991), pp. 159–178.

[3] Bénabou, J., Distributors at work (2000), notes from a course at TU Darmstadt in June 2000, taken
by Thomas Streicher.

[4] Blute, R. F., J. R. B. Cockett, R. A. G. Seely and T. H. Trimble, Natural deduction and coherence for
weakly distributive categories, JPAA 113 (1996), pp. 229–296.

[5] Blute, R. F., P. Panangaden and R. Seely, Fock space: A model of linear exponential types (1994),
revised version of MFPS 1993 paper, “Holomorphic models of exponential types in linear logic”.

[6] Cockett, J. and R. Seely, Weakly distributive categories, JPAA 114 (1997), pp. 133–173.

[7] Cockett, J. R. B. and R. A. G. Seely, Polarized category theory, modules, and game semantics, TAC
18 (2007), pp. 4–101.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–52 51

[8] Gan, W. L., Koszul duality for dioperads, Math. Res. Lett 10 (2003), pp. 109–124.

[9] Girard, J.-Y., Linear logic, TCS 50 (1987), pp. 1–102.

[10] Hermida, C., Representable multicategories, Adv. Math. 151 (2000), pp. 164–225.

[11] Hermida, C., Fibrations for abstract multicategories, in: G. Janelidze, B. Pareigis and W. Tholen,
editors, Galois Theory, Hopf Algebras, and Semiabelian Categories, Fields Institute Communications
43 (2004).

[12] Hörmann, F., Fibered multiderivators and (co)homological descent, TAC 32 (2017), pp. 1258–1362.

[13] Hyland, J. M. E., Proof theory in the abstract, APAL 114 (2002), pp. 43–78.

[14] Kissinger, A. and S. Uijlen, A categorical semantics for causal structure, in: Proceedings of the 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2017) (2017), pp. 1–12.
URL https://doi.org/10.1109/LICS.2017.8005095

[15] Lambek, J., The mathematics of sentence structure, The American Mathematical Monthly 65 (1958),
pp. 154–170.

[16] Lambek, J., On the calculus of syntactic types, in: R. Jakobson, editor, Structure of Language and its
Mathematical Aspects, Proceedings of Symposia in Applied Mathematics, XII (1961), pp. 166–178.

[17] Lambek, J., Deductive systems and categories II: Standard constructions and closed categories, in:
P. Hilton, editor, Category Theory, Homology Theory and their Applications, I, LNM 86, Springer,
1969 pp. 76–122.

[18] Licata, D. R., M. Shulman and M. Riley, A fibrational framework for substructural and modal logics,
in: 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017),
2017, pp. 25:1–25:22.

[19] Melliès, P.-A., Dialogue categories and chiralities, Publications of the Research Institute for
Mathematical Sciences 52 (2016).

[20] Melliès, P.-A. and N. Zeilberger, Functors are type refinement systems, in: Proceedings of the 42nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming (POPL 2015), 2015, pp. 3–16.

[21] Melliès, P.-A. and N. Zeilberger, A bifibrational reconstruction of Lawvere’s presheaf hyperdoctrine, in:
Proceedings of the 31st Annual IEEE Conference on Logic in Computer Science (LICS 2016), 2016,
pp. 555–564.

[22] Ryan, R., “Introduction to Tensor Products of Banach Spaces,” Springer Monographs in Mathematics,
Springer London, 2002.
URL https://books.google.fr/books?id=7xRlVTVSNpQC

[23] Shulman, M., ∗-autonomous categories are Frobenius pseudomonoids (2019), referenced in [24]. See
also n-Category Café blog post (Nov. 17, 2017), “Star-autonomous Categories are Pseudo Frobenius
Algebras”. In preparation.

[24] Shulman, M., The 2-Chu-Dialectica construction and the polycategory of multivariable adjunctions,
TAC 35 (2020), pp. 89–136.

[25] Stay, M., Compact Closed Bicategories, TAC 31 (2016), pp. 755–798.

[26] Szabo, M., Polycategories, Communications in Algebra 3 (1975), pp. 663–689.

N. Blanco, N. Zeilberger / Electronic Notes in Theoretical Computer Science 352 (2020) 29–5252

https://doi.org/10.1109/LICS.2017.8005095
https://books.google.fr/books?id=7xRlVTVSNpQC
https://golem.ph.utexas.edu/category/2017/11/starautonomous_categories_are.html
https://golem.ph.utexas.edu/category/2017/11/starautonomous_categories_are.html

	Introduction
	Polycategories, linear logic, and universality
	Polycategories
	Representable polycategories with duals
	Representable polycategories with duals are -representable polycategories
	Examples
	Example of Banach spaces

	Bifibrations of polycategories
	Definitions
	-autonomous categories as bifibrations of polycategories
	Additional examples
	Forgetful functor from Banach spaces
	Frobenius monoids

	Grothendieck correspondences
	Categorical Grothendieck correspondences
	Polycategorical Grothendieck correspondences
	Frobenius pseudomonoids and Classical Linear Logic

	Conclusion and Further work
	References

