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Abstract

The main goal of this article is to expose and relate different ways of interpreting the multiplicative fragment of classical linear logic
in polycategories. Polycategories are known to give rise to models of classical linear logic in so-called representable polycategories
with duals, which ask for the existence of various polymaps satisfying the different universal properties needed to define tensor,
par, and negation. We begin by explaining how these different universal properties can all be seen as instances of a single
notion of universality of a polymap parameterised by an input or output object, which also generalises the classical notion of
universal multimap in a multicategory. We then proceed to introduce a definition of in-cartesian and out-cartesian polymaps
relative to a refinement system (= strict functor) of polycategories, in such a way that universal polymaps can be understood as
a special case. In particular, we obtain that a polycategory is a representable polycategory with duals if and only if it is bifibred
over the terminal polycategory 1. Finally, we present a Grothendieck correspondence between bifibrations of polycategories and
pseudofunctors into MAdj, the (weak) 2-polycategory of multivariable adjunctions. When restricted to bifibrations over 1 we get
back the correspondence between ∗-autonomous categories and Frobenius pseudomonoids in MAdj that was recently observed by
Shulman.
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1 Introduction

In his early studies of the linguistic applications of Gentzen’s sequent calculus [Lam61], Lambek observed that
the so-called “associative syntactic calculus” of [Lam58] has a natural semantic interpretation, where formulas
are interpreted as bimodules of rings and proofs of sequents A1, . . . , An → B are interpreted as multilinear
maps A1 × · · · ×An → B. He mentions that one benefit of the sequent calculus presentation is that it leads to
a decision procedure for the existence of canonical mappings, and notes that “it has already been observed by
Bourbaki [Algèbre multilinéaire, 1948] that linear mappings of the kind we are interested in are best defined
with the help of multilinear mappings”. These early observations later led Lambek to formally introduce the
definition of multicategories in [Lam69], which generalise categories by allowing morphisms to have multiple
inputs, a paradigmatic example being the multicategory of vector spaces and multilinear maps.

Szabo, a student of Lambek, introduced polycategories in [Sza75], which further generalise multicategories
by allowing morphisms to have multiple outputs in addition to multiple inputs. One motivation for studying
polycategories from the view of proof theory is that they stand in the same relation to Gentzen’s classical
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sequent calculus LK as multicategories stand in relation to the intuitionistic sequent calculus LJ. For example,
the composition operation for morphisms in a polycategory is typed just like the cut rule in classical sequent
calculus. Lambek and Szabo’s work was later revisited from the perspective of linear logic [Gir87] by Cockett
and Seely [CS97], see also [BCST96,Hyl02,CS07]. In particular, the notion of a representable (or two-tensor)
polycategory with duals provides a natural source of models for the multiplicative fragment of classical linear
logic. Representable polycategories with duals are equivalent to the ∗-autonomous categories of Barr [Bar91],
but have the advantage that all of the logical connectives can be defined by the existence of objects and
(poly)morphisms satisfying certain universal properties, rather than as algebraic structures subject to coherence
conditions.

This relation between ∗-autonomous categories and representable polycategories with duals is analogous to
the relation between monoidal categories and representable multicategories (called monoidal multicategories by
Lambek [Lam69]), a relation studied carefully by Hermida [Her00]. Hermida noted certain analogies between
the theory of representable multicategories and the theory of fibred categories (cf. [Her00, Table 1]), which
he later made explicit by introducing a notion of (covariant) fibration of multicategories [Her04], in such a
way that a representable multicategory is precisely the same thing as a multicategory fibred over the terminal
multicategory 1. One interest of studying the more general notion of covariant fibration of multicategories
E → B, where every multimorphism f : A1, . . . , An → B in B induces a pushforward functor push〈f〉 :
EA1 × · · · × EAn → EB , is that it models a much richer class of structures coming from algebra and logic. For
example, Hermida notes that an algebra for an operad O can be identified with a discrete covariant fibration
over O, the latter seen as a one-object multicategory. The appropriate definition of contravariant fibration
(and of bifibration) of multicategories was not addressed in [Her04]. However, there is a natural definition
of contravariant fibration of multicategories, made explicit in the work of Hörmann [H1̈7, A.2] and of Licata,
Shulman, and Riley [LSR17], under which each multimorphism of the base multicategory induces a family
of pullback operations pull[f ](i) : Eop

A1
× · · · × Eop

Ai−1
× Eop

Ai+1
× · · · × Eop

An
× EB → EAi , parameterised by the

selection of the index 1 ≤ i ≤ n of a particular input object Ai. One interesting feature of this definition is that
monoidal biclosed categories in the sense of Lambek [Lam69] are equivalent to multicategories bifibred over
1. Moreover, replacing the terminal multicategory by an arbitrary base multicategory leads to a much richer
framework for modelling a variety of substructural and modal logics, as discussed by Licata et al. [LSR17], and
in a very similar spirit to Melliès and Zeilberger’s work on type refinement and monoidal closed bifibrations
(cf. [MZ15,MZ16]). In particular, a recurring pattern is that some algebraic gadget in the base (e.g., a monoid
object) induces some logical structure (e.g., monoidal closure) on its fibre.

In this paper, we begin to develop a theory of bifibrations of polycategories, guided by the principle that
representable polycategories with duals (and hence ∗-autonomous categories) should be equivalent to poly-
categories bifibred over the terminal polycategory 1. One consequence of this theory is that we recover a
nice observation recently made by Shulman [Shu19], that ∗-autonomous categories are equivalent to (pseudo)
Frobenius monoids in the (2-)polycategory of multivariable adjunctions. This will follow as a result of a gen-
eral Grothendieck construction for bifibrations of polycategories, in a similar manner to the pattern mentioned
above. Perhaps surprisingly, another one of our original motivations for developing this theory was trying to
better understand properties of the category FBan1 of finite dimensional Banach spaces and contractive maps.
It is a ∗-autonomous category and it comes with a ∗-autonomous forgetful functor into FVect, but contrary to
the latter it is not compact closed. It provides a model of classical MALL based on finite dimensional vector
spaces that is not degenerate, in the sense that the positive and negative fragments do not coincide. While
the tensor, and more generally the use of FBan1 as a model of intuitionistic MALL is well-documented (cf.
[BPS94]) we could not find any mention of the par in the literature. In fact, this category is one of the original
examples of ∗-autonomous category provided by Barr in [Bar79, Ch. 4, 53–59], but without describing the
tensor and par in FBan1 explicitly. Yet, the structures needed to interpret them are popular in the study of
Banach spaces: ⊗ and ` correspond to different norms placed on the tensor product of vector spaces called the
projective and the injective (cross)norms, which have the property of being extremal in all the well-behaved
norms that can be put on the tensor product. More specifically for any crossnorm ‖−‖ and any u ∈ A⊗B we
have ‖u‖A`B ≤ ‖u‖ ≤ ‖u‖A⊗B . We will see that this has a nice explanation from the fact that the projective
(⊗) norm and the injective (`) norm can be defined as pushforwards and pullbacks, respectively, relative to
the forgetful functor into vector spaces.

2 Polycategories, linear logic, and universality

2.1 Polycategories

There are several different definitions of “polycategory” in the literature. We will consider the following
definition of (non-symmetric) polycategory due to Cockett and Seely [CS97], which differs slightly from Szabo’s
original definition [Sza75] in imposing a planarity condition on composition. The ideas in this paper may be
transferred in an almost straightforward way to the setting of symmetric polycategories (cf. [Hyl02,Shu20]),
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but we work with planar polycategories for the sake of greater generality.

Definition 2.1 A polycategory P consists of:

• a collection of objects Ob(P)

• for any pair of finite lists of objects Γ and ∆, a set P(Γ; ∆) of polymaps from Γ to ∆ denoted f : Γ→ ∆ (we
refer to objects in Γ as inputs of f , and to objects in ∆ as outputs)

• for every object A, an identity polymap idA : A→ A

• for any pair of polymaps f : Γ → ∆1, A,∆2 and g : Γ′1, A,Γ
′
2 → ∆′ satisfying the restriction that [either ∆1

or Γ′1 is empty] and [either ∆2 or Γ′2 is empty], a polymap g ◦A f : Γ′1,Γ,Γ
′
2 → ∆1,∆

′,∆2

subject to appropriate unitality, associativity, and interchange laws whenever these make sense:

idA ◦A f = f (1)

f ◦A idA = f (2)

(h ◦B g) ◦A f = h ◦B (g ◦A f) (3)

(h ◦B g) ◦A f = (h ◦A f) ◦B g (4)

h ◦B (g ◦A f) = g ◦A (h ◦B f) (5)

Remark 2.2 The notation ◦A for the composition can be ambiguous when there are multiple copies of the
same object. This can be dealt with more carefully by indexing or labelling each input and output of a polymap.
However, we will stick with the more relaxed (albeit less precise) notation in this article, since it will never
lead to ambiguity in the examples.

Remark 2.3 We will sometimes find it useful to represent polymaps by string diagrams. In this diagrammatic
syntax, the composition operation may be depicted schematically as follows:

A
fg

Γ′1

Γ′2

∆′fΓ

∆1

∆2

The restriction on the composition operation that either ∆1 or Γ′1 is empty and that either ∆2 or Γ′2 is empty
is called a “planarity” condition, since in the picture above it means that there are actually no crossing wires.
In general, the string diagram of a polymap corresponds to a planar tree with the edges oriented from left
to right, and the polycategory axioms correspond to natural isotopies between diagrams. For example, the
interchange law (4) states that when composing along two different inputs, the order should not matter:

f

g

h

f

g

h=

This justifies drawing the two polymaps f and g above on the same level, as we will sometimes do in examples.

2.2 Representable polycategories with duals

In this section we briefly recall the notion of representable (or two-tensor) polycategory with duals, which has
been used to model the multiplicative connectives of classical linear logic.

Definition 2.4 Let Γ be a list of objects in a polycategory P. A tensor product of Γ is an object
⊗

Γ equipped
with a polymap mΓ : Γ→

⊗
Γ such that the operation P(Γ1,

⊗
Γ,Γ2; ∆)→ P(Γ1,Γ,Γ2; ∆) of precomposition

with mΓ is invertible. Dually, for any list of objects ∆, a par product (or cotensor product) of ∆ is an object˙
∆ equipped with a polymap w∆ :

˙
∆→ ∆ such that the operation P(Γ; ∆1,

˙
∆,∆2)→ P(Γ; ∆1,∆,∆2)

of postcomposition with w∆ is invertible.
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Definition 2.5 A representable polycategory is a polycategory that has tensors and pars of any finite lists of
objects.

The definition of representable polycategory (called two-tensor-polycategory in [CS97]) may be alternatively
stated requiring only the existence of binary and nullary tensors and pars, this being equivalent since the binary
and nullary cases are sufficient for building up tensor and pars of arbitrary finite lists of objects. In any case, the
definition implies that polymaps Γ→ ∆ of a representable polycategory are in one-to-one correspondence with
unary maps

⊗
Γ →

˙
∆ of its underlying category. Conversely, Cockett and Seely proved that any linearly

distributive category (C,⊗, 1,`,⊥) induces a polycategory where the polymaps Γ → ∆ are defined as maps⊗
Γ→

˙
∆ in C, and that this extends to an equivalence of 2-categories between representable polycategories

and linearly distributive categories [CS97]. One obtains ∗-autonomous categories by moreover asking for the
existence of duals.

Definition 2.6 A right dual of an object A is an object A∗ equipped with polymaps rcupA : · → A,A∗ and
rcapA : A∗, A→ · such that rcupA ◦A∗ rcapA = idA and rcapA ◦A rcupA = idA∗ . A left dual of A is an object
∗A equipped with polymaps lcupA : · → ∗A,A and lcapA : A, ∗A → · such that lcupA ◦∗A lcapA = idA and
lcapA ◦A lcupA = id∗A.

Definition 2.7 A polycategory is said to have duals if any object has a right and a left dual.

Note that this definition may be simplified in the case of a symmetric polycategory because left and
right duals coincide in that case, although following Cockett and Seely we have chosen to consider the more
general situation. Cockett and Seely proved that in the symmetric case, representable polycategories with
duals coincides with Barr’s notion of ∗-autonomous categories [Bar91], and that in the non-symmetric case it
coincides with a natural notion of “planar” ∗-autonomous categories [CS97].

2.3 Representable polycategories with duals are ∗-representable polycategories

In this section we introduce a notion of “∗-representability” of a polycategory, and prove that a polycategory
is ∗-representable if and only if it is a representable polycategory with duals.

Definition 2.8 A polymap u : Γ → ∆1, A,∆2 is said to be universal in the output A (or out-universal
for short, or simply universal when there is no ambiguity), written u : Γ → ∆1, A,∆2 if for any polymap
h : Γ1,Γ,Γ2 → ∆1,∆,∆2 such that Γi = ∅ or ∆i = ∅, there is a unique polymap h/u : Γ1, A,Γ2 → ∆ such that
h = h/u ◦A u.

Dually, a polymap n : Γ1, A,Γ2 → ∆ is universal in the input A (or in-universal), written n : Γ1, A,Γ2 → ∆
if for any polymap h : Γ1,Γ,Γ2 → ∆1,∆,∆2 such that Γi = ∅ or ∆i = ∅ there is a unique polymap n\h : Γ→
∆1, A,∆2 such that h = n ◦A n\h.

Graphically, the definitions are summarized in the following diagram:

u h/u

∆1

∆2

∆Γ

Γ1

Γ2

h

n\h n

∆1

∆2

∆Γ

Γ1

Γ2

h

(∗)

Remark 2.9 By extension, we say that A is an out-universal object (resp. in-universal object) with respect to
the surrounding context Γ→ ∆1, ,∆2 (resp. Γ1, ,Γ2 → ∆) if there is an out-universal polymap Γ→ ∆1, A,∆2

(resp. in-universal polymap Γ1, A,Γ2 → ∆). For a fixed surrounding context, in-universal and out-universal
objects are unique up to unique isomorphism.

Definition 2.10 A polycategory is said to be ∗-representable if it has all in-universal and out-universal objects,
that is, if for any Γ, ∆1, ∆2 there is an object A equipped with an out-universal polymap Γ→ ∆1, A,∆2, and
similarly, for any Γ1, Γ2, ∆ there is an object A equipped with an in-universal polymap Γ1, A,Γ2 → ∆.

It may be argued that Definition 2.8 is a natural generalisation of the notion of strong universal multimap in
a multicategory [Her00], and Definition 2.10 the natural generalisation of representability from multicategories
to polycategories (pace Defn. 2.5). In Section 3, we will see that these concepts are special cases of more general
fibrational concepts. Like strong universal multimaps in a multicategory, both in-universal and out-universal
polymaps are closed under composition in an appropriate sense.

Proposition 2.11 In-universal polymaps compose, in the sense that if f : Γ1, A,Γ2 → ∆1, B,∆2 (in the
notation of Definition 2.8) and g : Γ′1, B,Γ

′
2 → ∆′, then g ◦B f : Γ′1,Γ1, A,Γ2,Γ

′
2 → ∆1,∆

′,∆2. Similarly,
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out-universal maps compose in the sense that if f : Γ → ∆1, B,∆2 and g : Γ′1, B,Γ
′
2 → ∆′1, C,∆

′
2, then

g ◦B f : Γ′1,Γ,Γ
′
2 → ∆1,∆

′
1, C,∆

′
2,∆2.

Proof. As we will see later, this is a special case of Proposition 3.4. 2

An immediate consequence of these definitions is that tensor products can be considered as out-universal
objects, and par products as in-universal objects.

Proposition 2.12 An object
⊗

Γ equipped with a polymap m : Γ →
⊗

Γ is a tensor product of Γ iff m is
out-universal (in its unique output). Dually, an object

˙
∆ equipped with a polymap w :

˙
∆ → ∆ is a par

product of ∆ iff w is in-universal (in its unique input).

Somewhat more surprisingly, duals can also be characterised as either in-universal or out-universal objects.

Proposition 2.13 Let A and A∗ be objects of a polycategory P. The following are equivalent:

(i) there is an out-universal map rcupA : · → A,A∗

(ii) there is an in-universal map rcapA : A∗, A→ ·
(iii) there is an out-universal map rcupA : · → A,A∗

(iv) there is an in-universal map rcapA : A∗, A→ ·
(v) A∗ is the right dual of A

Proof. We prove (i)↔ (v), the other cases are similar.
Suppose that there is an out-universal map rcupA : · → A,A∗. Then it verifies the following factorisation

property

g

A

∆
Γ

h

A∗

In particular by taking h = idA we get for rcapA := g : A∗, A→ ·:

A

idA

A∗

A

That satisfies the snake identity (where composition take place) in A∗ by definition.
We get the second snake identity by following equalities where we go from the first line to the second by

introducing a snake identity in A∗ and we get the last equality by the interchange law for composition:

idA∗

rcupA rcupA

=

= =

rcupA rcupA
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So rcupA can be factored through itself and idA∗ or it can be factored through itself and the snake in A. But
universality of rcupA assure unicity of this factorisation. So we get the second snake identity.

Conversely if we have rcupA and rcapA satisfying the snake identities we want the factorisation property
that for any h : Γ → A,∆ there is a unique g : Γ, A∗ → ∆ such that h = g ◦A∗ rcupA. We can take
g = rcapA ◦A h. This satisfies the equation by using the snake identity and an interchange law. To get
unicity it suffices to notice that for any g such that h = g ◦A∗ rcupA we can post-compose by rcapA to get
rcapA ◦A h = rcapA ◦A g ◦A∗ rcupA = g ◦A∗ rcapA ◦A rcupA = g. 2

Remark 2.14 There is of course a similar result for left duals with lcupA and lcapA.

Theorem 2.15 P is a representable polycategory with duals iff it is ∗-representable.

Proof. The right to left direction follows by propositions 2.12 and 2.13. For the left to right direction we want
to construct in-universal and out-universal objects for any contexts just using ⊗, ` and ∗. Given contexts
Γ,∆1,∆2 consider the object A := ∆∗1 ⊗

⊗
Γ ⊗ ∗∆2 where ∆∗1 := B∗1,n1

⊗ ... ⊗ B∗1,1 for ∆1 = B1,1, ..., B1,n1

and similarly for ∗∆2. This object comes with the following polymap, which is a composition of out-universal
polymaps along their out-universal objects. So by proposition 2.11, it is out-universal.

AΓ

⊗

⊗

⊗

∆1

∆2

∆∗1

∗∆2

Similarly, given Γ1,Γ2,∆ the object A := ∗Γ1 `˙
∆ ` Γ∗2 is in-universal with in-universal polymap:

A ∆

Γ2

Γ1

Γ∗2

∗Γ1

`

`

`

2

2.4 Examples

Example 2.16 Any linearly distributive category C gives a polycategory P(C) called its underlying poly-
category. It has the same objects as C and a polymap f : A1, ..., Am → B1, ..., Bn in P(C) is a map
f : A1 ⊗ ...⊗Am → B1 ` ...`Bn in C.

Example 2.17 In particular any monoidal category gives rises to a polycategory with the same objects and
with polymaps f : A1 ⊗ ...⊗Am → B1 ⊗ ...⊗Bn.

Example 2.18 Although this example is trivial, we will see that it plays an important role in Section 3. The
terminal polycategory 1 has one object ∗ and a unique arrow sm,n : ∗m → ∗n for every arity m and co-arity n.

Example 2.19 Any category induces a polycategory with only unary maps. Conversely any polycategory has
an underlying category obtained by forgetting about the non-unary maps.

Example 2.20 From any multicategoryM we can define two polycategoriesM+ andM− that have the same
objects asM. The polymaps ofM+ have always exactly one output and correspond to multimaps inM while
the polymaps in M− have always exactly one input and correspond to multimaps in M reversed. Conversely
from any polycategory we get two multicategories by restricting to polymaps with exactly one output and
(reversed) polymaps with exactly one input.
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Example 2.21 There are polycategories Vect and FVect of vector spaces (resp. finite dimensional vector
spaces) and polylinear maps. Both of these can be seen as the underlying polycategories of monoidal categories
of vector spaces and linear maps. FVect is a representable polycategory with duals while Vect is representable
but does not have duals in general. In fact the vector spaces that admit a dual are precisely the finite dimensional
ones.

Example 2.22 Free polycategories give examples of polycategories which are not representable. Let a “poly-
signature” Σ consist of a collection of types, together with for any finite lists of types Γ and ∆, a set of
operations Σ(Γ; ∆). The free polycategory generated by Σ, denoted P(Σ), has types as objects, and polymaps
given by planar oriented trees with a boundary of free edges, whose nodes are labelled by operations and
whose edges are labelled by types subject to the constraints specified by the signature. For example, here is a
depiction of the composite polymap f ◦A (g ◦B f) : A,B,B → A,B in the free polycategory generated by the
signature containing a pair of types A and B and a pair of operations f : A,B → B and g : B → A,A (in the
diagram, the edges are implicitly oriented from left to right):

A

f g

fB

B

B

A

A

B

In general, composition is performed by grafting two trees along an edge, while the identity on a type A is
given by the trivial tree with no nodes and one oriented edge labelled A. Observe this polycategory is not
representable, for example there is no polymap A,A→ A⊗A.

Example 2.23 A one-object multicategory is commonly referred to as an operad, while a one-object polycat-
egory is also known as a dioperad [Gan03]. For any polycategory P and any object A ∈ P there is a dioperad
called the endomorphism dioperad of A, denoted EndP(A), defined as the full subpolycategory of P containing
only the object A. It has one object and its polymaps correspond to polymaps A, ..., A→ A, ..., A in P.

2.5 Example of Banach spaces

In this example we focus on Banach spaces. Although the use of polycategories is new most of the results are
standard. For conciseness we omitted most of the definitions and proofs here, although they are available in an
appendix of the paper. The standard theory of Banach spaces can be found in [Rya02]. We will only consider
finite dimensional Banach spaces but this can be extended to the general case by replacing ∗-autonomous
structures by linearly distributive ones. This allows us to skip the subtleties about completeness.

We fix a field K = R,C. FVect is the polycategory of finite dimensional K-vector spaces and K-polylinear
maps, where a polylinear map A1, ..., Am → B1, ..., Bn corresponds to a linear map A1⊗...⊗Am → B1⊗...⊗Bn.

For a polylinear map f : A1, ..., Am → B1, ..., Bn and elements ai ∈ Ai and ϕj ∈ Bj we will write the scalar
(ϕ1, ..., ϕn)f(a1, ..., am) := (ϕ1 ⊗ ... ⊗ ϕm)(f(a1 ⊗ ... ⊗ am)). Continuous linear maps between Banach spaces
correspond to bounded maps. This can be generalised to polylinear maps.

Definition 2.24 A polylinear map f : A1, ..., Am → B1, ..., Bn between normed vector spaces (Ai, ‖ − ‖Ai)
and (Bj , ‖ − ‖Bj ) is bounded if ∃K,∀ai ∈ Ai,∀ϕj ∈ B∗j , |(ϕ1, ..., ϕn)f(a1, ..., am)| ≤ K

∏
i,j

‖ai‖Ai‖ϕj‖B∗j .

Proposition 2.25 A unary polymap f : A→ B is bounded if it is bounded as a linear map.

The smaller such K defines a norm on f and f is contractive when its norm is smaller than 1.

Definition 2.26 A polylinear map f : A1, ..., Am → B1, ..., Bn between normed vector spaces (Ai, ‖ − ‖Ai)
and (Bj , ‖ − ‖Bj ) is contractive if ∀ai ∈ Ai,∀ϕj ∈ B∗j , (ϕ1, ..., ϕn)f(a1 ⊗ ...⊗ am)| ≤

∏
i,j

‖ai‖Ai‖ϕj‖B∗j

Definition 2.27 There are polycategories:

• Ban of Banach spaces and bounded polylinear maps

• FBan of finite dimensional Banach spaces and bounded polylinear maps

• Ban1 of Banach spaces and contractive polylinear maps

• FBan1 of finite dimensional Banach spaces and contractive polylinear maps

For objects in any of those polycategories to be isomorphic they need to be isomorphic as vector spaces.
(A, ‖ − ‖) and (A, ‖ − ‖′) are isomorphic in Ban and FBan if ∃K,K ′,∀a ∈ A, K‖a‖ ≤ ‖a‖′ ≤ K ′‖a‖. Such
norms are called equivalent. Two Banach spaces are isomorphic in Ban1 and FBan1 if their norms are equal.
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In particular, this means that FBan is not an interesting polycategory since all the norms on a given finite
dimensional vector space are equivalent.

Proposition 2.28 FBan is equivalent to FVect.

On the other hand, FBan1 is a ∗-representable polycategory that does not come from a compact closed
category. It is one of the examples of ∗-autonomous categories described in Barr’s original paper [Bar79]. This
is proved by using a characterisation of a ∗-autonomous category as a symmetric monoidal closed category
where the canonical maps A → A∗∗ are isomorphisms. In particular, the induced norm for the par is never
discussed. We did not find any reference in the literature linking it to the well-known injective norm in the
theory of Banach spaces.

Definition 2.29 Let (A, ‖ − ‖A) and (B, ‖ − ‖B) be two Banach spaces. The projective norm A⊗B and the
injective norm A`B are the norms defined on the vector space A⊗B by the following formulas:

‖u‖A⊗B := inf
u=

∑
i
ai⊗bi

‖ai‖A‖bi‖B ‖u‖A`B := sup
‖ϕ‖A∗ ,‖ψ‖B∗≤1

|(ϕ⊗ ψ)(u)|

These norms are known to be extremal among the set of well-behaved norms that one can put on the tensor.

Definition 2.30 For Banach spaces (A, ‖ − ‖A) and (B, ‖ − ‖B), a norm ‖ − ‖ on A ⊗ B is a crossnorm if
∀a, b ∈ A×B, ‖a⊗ b‖ ≤ ‖a‖A‖b‖B and ∀ϕ,ψ ∈ A∗ ⊗B∗, ‖ϕ⊗ψ‖′ ≤ ‖ϕ‖A∗‖ψ‖B∗ with ‖− ‖′ the dual norm.

Remark 2.31 It is equivalent to ask for equalities in the definition. A proof can by found in [Rya02].

Proposition 2.32 A norm is a crossnorm iff it makes A,B → A⊗B and A⊗B → A,B contractive.

The injective and projective norms are crossnorms. The following property of the injective and projective
crossnorm made us consider the injective crossnorm as a potential candidate for interpreting the par, and was
one of our original motivations for studying the notion of bifibration of polycategories developed in Section 3.

Proposition 2.33 Let ‖ − ‖ be a crossnorm then for any u ∈ A⊗B we have ‖u‖A`B ≤ ‖u‖ ≤ ‖A⊗B

Theorem 2.34 FBan1 is a ∗-representable polycategory with tensor, par and duality defined above.

Remark 2.35 More than just a model of classical MLL, FBan1 is a model of classical MALL. The additive
connectives are given by the vector space A⊕B with the norms ‖(a, b)‖1 :=

∑
i

‖a‖A + ‖b‖B and ‖(a, b)‖∞ :=

max(‖a‖A, ‖b‖B). These norms are extremal among the p-norms.

3 Bifibrations of polycategories

In this section we introduce a notion of bifibration of polycategories, and prove that a polycategory is a repre-
sentable polycategory with duals just in case it is bifibred over 1. We find it convenient to begin by adapting
some terminological and notational conventions from the study of type refinement systems [MZ15,MZ16].

3.1 Definitions

Definition 3.1 A poly-refinement system is defined as a (strict) functor of polycategories p : E → B. Explicitly,
p sends objects R ∈ E to objects p(R) ∈ B and polymaps ψ : R1, ..., Rm → S1, ..., Sn in E to polymaps
p(f) : p(R1), ..., p(Rm) → p(S1), ..., p(Sn) in B in such a way that identities and composition are preserved
strictly. We write R @ A (pronounced “R refines A”) to indicate that p(R) = A, and extend this to lists
of objects in the obvious way, writing Π @ Γ to indicate that Π = R1, . . . , Rn and Γ = A1, . . . , An for some
R1 @ A1, . . . , Rn @ An. Finally, we write ψ : Π =⇒

f
Σ to indicate that ψ is a polymap Π → Σ in E such that

p(ψ) = f , with the implied constraint that f : Γ→ ∆ where Π @ Γ and Σ @ ∆.

Remark 3.2 We will draw poly-refinement systems vertically. The top diagram will be in E and the bottom
one in B with objects and polymaps directly above their image, e.g. preservation of composition is given by:
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R

A

fψ

Π′1

Π′2

Σ′ϕΠ

Σ1

Σ2

fg

Γ′1

Γ′2

∆′fΓ

∆1

∆2

E

B

Definition 3.3 Fix p : E → B a poly-refinement system and ψ : Π1, R,Π2 =⇒
g

Σ a polymap in E with R @ A. ψ

is in-cartesian in R (relative to p), written ψ : Π1, R,Π2 =⇒
g

Σ, if for any polymap ξ : Π1,Π,Π2 =⇒
g◦Af

Σ1,Σ,Σ2,

satisfying the usual planarity condition that either Πi = ∅ or Σi = ∅ for each i = 1, 2, there exists a unique
polymap ψ\ξ : Π =⇒

f
Σ1, R,Σ2 such that ξ = ψ ◦R (ψ\ξ).

Dually, ϕ : Π =⇒
f

Σ1, S,Σ2, with S @ B is out-cartesian in S, written ϕ : Π =⇒
f

Σ1, S,Σ2, if for any

polymap ξ : Π1,Π,Π2 =⇒
g◦Bf

Σ1,Σ,Σ2, satisfying the planarity condition that either Πi = ∅ or Σi = ∅, there is

a unique polymap ξ/ϕ : Π1, S,Π2 =⇒
g

Σ such that ξ = ξ/ϕ ◦S ϕ.

Graphically, the definitions are summarised by the following diagram:

p

ψ\ξ ψ

Σ1

Σ2

ΣΠ

Π1

Π2

ξ

f g

∆1

∆2

∆Γ

Γ1

Γ2

g ◦A f

E

B

ϕ ξ/ϕ

Σ1

Σ2

ΣΠ

Π1

Π2

ξ

f g

∆1

∆2

∆Γ

Γ1

Γ2

g ◦B f

in-cartesian out-cartesian

(†)

Proposition 3.4 In-cartesian polymaps compose, in the sense that if ϕ : Π1, R,Π2 =⇒
g

Σ1, S,Σ2 and ψ :

Π′1, S,Π
′
2 =⇒

f
Σ′ then ψ ◦S ϕ : Π′1,Π1, R,Π2,Π

′
2 =⇒
g◦Bf

Σ1,Σ
′,Σ2. Similarly, out-cartesian maps compose in the

sense that if ϕ : Π =⇒
g

Σ1, S,Σ2 and ψ : Π′1, S,Π
′
2 =⇒

f
Σ′1, T ,Σ

′
2 then ψ ◦S ϕ : Π′1,Π,Π

′
2 =⇒
g◦Bf

Σ1,Σ
′
1, T ,Σ

′
2,Σ2.

Definition 3.5 A poly-refinement system p : E → B is said to be a pull-fibration if for any f : Γ1, A,Γ2 → ∆
in B and any Π1 @ Γ1, Π2 @ Γ2, and Σ @ ∆ there is an object pull[f ](Π1 Π2; Σ) @ A together with an
in-cartesian polymap Π1,pull[f ](Π1 Π2; Σ),Π2 =⇒

f
Σ. Dually, p is said to be a push-fibration if for any

f : Γ → ∆1, B,∆2 in B and any Π @ Γ, Σ1 @ ∆1, and Σ2 @ ∆2 there is an object push〈f〉(Π; Σ1 Σ2) @ B
together with an out-cartesian polymap Π =⇒

f
Σ1,push〈f〉(Π; Σ1 Σ2),Σ2. Finally, p is said to be a bifibration

if it is both a pull-fibration and a push-fibration.
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Remark 3.6 When pulling along a map f : A→ ∆ with only one input, we will write pull[f ](Σ) as shorthand
for pull[f ]( ; Σ). Similarly when pushing along a map f : Γ→ A, we will write push〈f〉(Γ) for push〈f〉(Γ; ).

3.2 ∗-autonomous categories as bifibrations of polycategories

Comparing diagram (†) with diagram (∗), the following statements are self-evident.

Proposition 3.7 Let P be a polycategory. A polymap u : Γ → ∆1, A,∆2 (resp. u : Γ1, A,Γ2 → ∆) is out-
universal (resp. in-universal) in A iff it is out-cartesian (resp. in-cartesian) with respect to the unique functor
P → 1 into the terminal polycategory.

Proposition 3.8 P is a ∗-representable polycategory iff P → 1 is a bifibration of polycategories.

We then derive the following as a corollary of Theorem 2.15 and Cockett and Seely’s connection between
∗-autonomous categories and representable polycategories with duals.

Theorem 3.9 There is an equivalence between planar ∗-autonomous categories and bifibrations over the ter-
minal polycategory 1.

This correspondence may be extended in a straightforward way to the case of ordinary (symmetric) ∗-
autonomous categories by considering symmetric bifibrations, that is, symmetric poly-refinement systems (=
functors of symmetric polycategories that strictly preserve identities, composition, and the symmetry actions)
which are bifibrations in the above sense. We also expect that this result may be stated more precisely as an
equivalence of 2-categories, but we leave this to future work.

One application of Theorem 3.9 is that it provides a way of decomposing a ∗-autonomous structure on a
category, using elementary facts about cartesian polymaps.

Proposition 3.10 For p : P → E and q : E → B poly-refinement systems, and ψ : Π1, R,Π2 =⇒
g

Σ a polymap

in P, if ψ is p-in-cartesian in R @ A and g is q-in-cartesian in A @ X then ψ is q ◦ p-in-cartesian in R @ X.

Remark 3.11 Similarly, a p-out-cartesian polymap over a q-out-cartesian polymap is (q ◦ p)-out-cartesian.

Proposition 3.12 Let p : E → B be a poly-refinement system, and suppose that B is ∗-representable. If E has
all in-cartesian liftings of in-universal polymaps and all out-cartesian liftings of out-universal polymaps then E
is a ∗-representable polycategory.

Proof. By Propositions 3.7 and 3.10. 2

3.3 Additional examples

Example 3.13 Let E and B be ordinary categories considered as degenerate polycategories with only unary
co-unary maps (i.e., polymaps of arity and co-arity 1), and let p : E → B be an ordinary (strict) functor.
Then p is a pull-fibration, push-fibration or bifibration just in case it is an ordinary (Grothendieck) fibration,
opfibration or bifibration. Similarly, if E and B are multicategories considered as polycategories with only
co-unary maps, then p is a push-fibration just in case it is a covariant fibration of multicategories in the sense
of Hermida [Her04], and more generally the polycategorical notions of pullback and pushforward coincide with
the multicategorical ones described in [H1̈7,LSR17].

Example 3.14 The forgetful functor Cat∗ → Cat from the category of pointed (small) categories to the
category of (small) categories is an opfibration of 2-categories. The pushforward of (A, A) along F : A → B is
(B, F (A)). Similarly the forgetful functor Adj∗ → Adj of pointed adjunctions is a bifibration of 2-categories.
Here a pointed adjunction between pointed categories (A, A) and (B, B) consist of an adjunction F a G : A → B
and a morphism f : F (A)→ B in B - or equivalently of a morphism g : A→ G(B) in A. The pushforward is
given by the image by F while the pullback is given by the image of G. While working on the polycategorical
Grothendieck correspondence we will define the (weak) 2-polycategory of multivariable adjunction MAdj. It
also has a pointed variant MAdj∗. The forgetful functor induced is a bifibration of 2-polycategories.

3.4 Forgetful functor from Banach spaces

We will use proposition 3.10 to derive the ∗-representability of the polycategory FBan1 defined in 2.5. In
order to do that we consider the forgetful functor FBan1 → FVect. We want to characterise the polymaps
that admit cartesian liftings. The proofs can be found in appendix A.

10



Blanco & Zeilberger

Definition 3.15 Given f : A1, ..., Am → B1, ..., Bn and norms ‖−‖Ai , ‖−‖Bj for all i 6= k and all j, we define

a function ‖ − ‖f : Ak → K by ‖x‖f := sup
ai,ϕj 6=0

|(ϕ1,...,ϕn)f(a1,...,x,...,am)|∏
i6=k,j

‖ai‖Ai‖ϕj‖B∗j

Proposition 3.16 ‖ − ‖f is a pseudonorm on Ak.

We want to characterise the polymaps for which this is a norm.

Definition 3.17 f is injective in Ak - or Ak-injective - if (∀ai, f(a1, ..., x, ..., am) = 0)⇒ x = 0

Definition 3.18 The Ak-kernel of f is the set KerAk(f) := {x ∈ Ak | f(a1, ..., x, ..., am) = 0 ∀ai}.

The Ak-kernel of f forms a vector space. f is Ak-injective if its Ak-kernel is trivial. Furthermore we have
that KerAk(f) = {x ∈ Ak | (ϕ1, ..., ϕn)f(a1, ..., x, ..., am) = 0 ∀ai∀ϕj} by linearity of

⊗
j

ϕj .

Remark 3.19 A polylinear map f : A→ B is A-injective if it is injective as a linear map.

Proposition 3.20 For f , ‖ − ‖Ai and ‖ − ‖Bj , ‖ − ‖f is a norm iff f is Ak-injective.

It is worth noticing that this only depends on f and not on any properties of the norms.

Proposition 3.21 For f Ak-injective and norms ‖ − ‖Ai , ‖ − ‖Bj , the norm ‖ − ‖f makes f contractive.

This norm defines a pullback in Ban1,FBan1.

Proposition 3.22 Given a B-injective polylinear map g : Γ′1, A,Γ
′
2 → ∆′ with lists Γ′i = A′i,1, ..., A

′
i,m′i

and

∆′ = B′1, ..., B
′
n we fix families of norms ‖ − ‖Γ′i = (‖ − ‖A′i,j ) and ‖ − ‖′∆ = (‖ − ‖B′i). Then the pullback is

given by pull[g]((Γ′1, ‖ − ‖Γ′1) (Γ′2, ‖ − ‖Γ′2); (∆, ‖ − ‖∆)) = (A, ‖ − ‖g).
So we have in-cartesian liftings of any polylinear map that is injective in the input considered. The injectivity

condition is only needed for ‖ − ‖f to be a norm, otherwise it is still a seminorm, i.e., ‖x‖f ≥ 0 for all x and
‖0‖f = 0, but ‖x‖f = 0 does not imply x = 0.

Corollary 3.23 There is a polycategory FBanps
1 of finite dimensional complete seminormed vector spaces and

contractive polylinear maps that comes with a forgetful functor that is pull-fibred.

Now we want to determine which polylinear maps have out-cartesian liftings.

Definition 3.24 For f : Γ → ∆1, A,∆2 and families of norms ‖ − ‖Γ, ‖ − ‖∆1
, ‖ − ‖∆2

, we define a function
‖ − ‖f : Bk → K̄ where K̄ is the completion of K, i.e., we add a point at infinity. It is given by ‖y‖f :=

inf
y=

∑
i

(−→ϕ 1,i,idA,
−→ϕ 2,i)f(−→a i)

∑
i

‖−→ϕ 1,i‖‖−→ϕ 2,i‖‖−→a i‖ where the sum is over all the decompositions of y.

Proposition 3.25 ‖ − ‖f is an extended norm, i.e., a norm with value in K̄.

Definition 3.26 f : Γ→ ∆1, A,∆2 is A-surjective if ∀y ∈ A,∃−→ϕ 1,i,
−→ϕ 2,i,

−→a i, y =
∑
i

(−→ϕ 1,i, idA,
−→ϕ 2,i)f(−→a i).

The A-image of f is the set ImA(f) := {
∑
i

(−→ϕ 1,i, idA,
−→ϕ 2,i)f(−→a i)}.

Proposition 3.27 ImA(f) forms a vector space. f is A-surjective iff ImA(f) = A.

Remark 3.28 A linear map is B-surjective iff it is surjective. Indeed if for y ∈ B there are xi such that
y =

∑
i

f(xi) then by linearity y = f(
∑
i

xi).

Proposition 3.29 For f and families of norms ‖−‖Γ, ‖−‖∆1 , ‖−‖∆2 , ‖−‖f is a norm iff f is A-surjective.

Proposition 3.30 For f A-surjective and families of norms as usual, ‖ − ‖f makes f contractive.

This norm defines a pushforward on Ban1,FBan1.

Proposition 3.31 For f : Γ → ∆1, A,∆2 a A-surjective polylinear map and the usual families of norms, we
get the pushforward push〈f〉(Γ; ∆1 ∆2) = (A, ‖ − ‖f ).

So we can take the out-cartesian lifting of any polymap that is surjective in the considered output.

Corollary 3.32 There are polycategories FBanex
1 and FBanex,ps

1 of f.d. extended normed/seminormed vector
spaces and polylinear maps with forgetful functors that are push-fibred and bifibred respectively.

11



Blanco & Zeilberger

When considering FBan1 even without semi-/extended norms, there are still enough cartesian polymaps
to lift the ∗-representability of FVect.

Proposition 3.33 In FVect, the universal polylinear maps mA,B : A,B → A⊗B, wA,B : A⊗B → A,B and
rcapA : A∗, A→ · are A⊗B-surjective, A⊗B-injective and A∗-injective.

Corollary 3.34 FBan1 is ∗-representable.

Remark 3.35 We get the projective, injective and dual norm using the norms above: ‖− ‖A⊗B = ‖− ‖mA,B ,
‖ − ‖A`B = ‖ − ‖wA,B and ‖ − ‖A∗ = ‖ − ‖rcapA . The fact that the projective and injective crossnorms are
extremal follows directly from the factorisation properties of the cartesian polymaps mA,B and wA,B .

3.5 Frobenius monoids

Definition 3.36 In a polycategory P a Frobenius monoid is an object A equipped with a unique polymap
(m,n)A : Am → An for each m,n ∈ (N) such that (1, 1)A = idA and these polymaps are stable under
composition.

Proposition 3.37 Equivalently a Frobenius monoid in P is a functor F : 1→ P.

Proof. The Frobenius monoid corresponds to F (∗) and the polymaps (m,n)F (∗) to F ((m,n)). The properties
needed on the polymaps are exactly functoriality of F . 2

Remark 3.38 For P representable with ⊗ = ` this reduces to the unbiased definition of a Frobenius monoid
in a monoidal category.

Definition 3.39 Given a poly-refinement system p : E → B and a Frobenius monoid A in B the polyfiber of p
over A, noted p−1(A) is the subcategory of E whose objects and polymaps are sent by p to A and the (m,n)A.

Proposition 3.40 p−1(A) is equivalent to the following pullback:

p−1(A) E

1 B

!

y
p

A

where A : 1→ B is the functor associated to the object A.

Proposition 3.41 Given a poly-refinement system p : E → B and a functor s : B′ → B, let E ×B B′ be the
pullback.

E ×B B′ E

B′ B

π1

π2

y
p

s

For a polymap f : Γ1, A,Γ2 → ∆ in B′ and lists of objects Π1,Π2,Σ in E ×B B′ lying over Γ1,Γ2 and ∆, if

there is a pullback pull
s(A)
s(f) (π1(Π1)|π1(Π2);π1(Σ)) in E then there is a pullback pullAf (Π1|Π2; Σ) in E ×B B′.

Proof. E×BB′ is the polycategory whose objects are pairs of objects (E,B′) of E and B such that p(E) = s(B′)
and whose polymaps are pairs of polymaps (f, b′) such that p(f) = s(b′).

Given a polymap f : Γ1, A,Γ2 → ∆ in B′ and lists of objects (Π1,Γ1), (Π2,Γ2), (Σ,∆) in E ×B B′ from

a pullback pull
s(A)
s(f) (Π1|Π2; Σ) in E with in-cartesian polymap ϕ : Π1, pull

s(A)
s(f) (Π1|Π2; Σ),Π2 → Σ we get a

pullback pullAf ((Π1,Γ1)|(Π2,Γ2); (Σ,∆)) := (pull
s(A)
s(f) (Π1|Π2; Σ), A) with in-cartesian polymap (ϕ, f).

2

Remark 3.42 Similarly if the pushforward exists in E it exists in E ×B B′.

Corollary 3.43 Given a poly-refinement system p : E → B and a Frobenius monoid (A, {(m,n)A}) in B if all

in-cartesian and out-cartesian polymaps of (m,n)A exist then p−1(A) is ∗-representable.

12
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4 Grothendieck correspondences

We should emphasise that the results in this section, and in particular the polycategorical Grothendieck corre-
spondences, are conditioned on having a theory of weak 2-polycategories. To the extent of our knowledge such
a theory has not been carefully worked out yet. We leave it as future work to craft this theory. Meanwhile
we will describe the properties we assume to hold for weak 2-polycategories after recalling the usual notion of
categorical Grothendieck correspondences.

4.1 Categorical Grothendieck correspondences

By “Grothendieck correspondence”, we refer to the equivalence between fibrations and indexed categories, as
well as a range of several other similar correspondences (the first was originally described by Bénabou [B0́0]):

• Functor E → B ←→ lax normal functor Bop → Dist

• Fibration E → B ←→ pseudofunctor Bop → Cat

• Opfibration E → B ←→ pseudofunctor Bop → Catop (or equivalently B → Cat)

• Bifibration E → B ←→ pseudofunctor Bop → Adj

Here Dist is the bicategory whose objects are small categories and 1-cells A −7−→ B are distributors, i.e.,
functors A × Bop → Set, with 2-cells given by natural transformations. While Cat (respectively Adj) is the
(strict) 2-category whose objects are small categories, 1-cells are functors (resp. adjunctions), and 2-cells are
natural transformations. Notice that Cat, Catop and Adj are all subbicategories of Dist corresponding to
distributors A −7−→ B that are representable in A, in B, and in both, respectively. The explicit constructions are
provided in Appendix B.

4.2 Polycategorical Grothendieck correspondences

We want to extend the previous correspondences to polycategories as follows:

• Poly-refinement system E → B ←→ lax normal functor Bop → Dist

• Bifibration E → B ←→ Pseudofunctor Bop →MAdj

where Dist is the weak 2-polycategory of sets and multivariable distributors and MAdj is the weak 2-
polycategory of sets and multivariable adjunctions. It is worth noting that for us (0, 0)-adjunctions will be
sets, in contrast to the original definition in [Shu20] where they are taken to be trivial. Shulman discusses
both possibilities, but chooses the latter to turn MAdj into a strict 2-polycategory, whereas the former fits
more naturally in our framework at the price of MAdj being a weak 2-polycategory. Like in the categorical
case, MAdj is a sub-2-polycategory of Dist consisting of distributors that are representable in each of their
variables.

4.2.1 About 2-polycategories
As stated above, to express these correspondences we need some theory of weak 2-polycategory, where by
2-polycategory we mean that the 1-cells can have multiple inputs and outputs but not the 2-cells. In this paper
we only assume that there are weak 2-polycategories Dist and MAdj and that lax functors and pseudofunc-
tors behave in the expected way. More generally we suspect that weak 2-polycategories and ∗-autonomous
bicategories will be connected in a way such that the results of this paper can be relaxed to this setting. In
particular, any compact closed bicategory – as defined by Mike Stay in [Sta16] – should be a ∗-autonomous
bicategory, and by extension a weak 2-polycategory. This would entail that Dist is weak 2-polycategory.

4.2.2 Distributors and multivariable adjunctions
In this section we introduce the weak 2-polycategories Dist and MAdj. We prove that a multivariable
adjunction can be understood as a representable distributor.

Definition 4.1 Dist is the weak 2-polycategory that has as objects categories, that has as polymaps f :
A1, ..., Am → B1, ..., Bn distributors f : A1 × ... × Am −7−→ B1 × ... × Bn and that has as 2-cells natural
transformations.

Definition 4.2 Given categories A1, ..., Am, B1, ..., Bn, a (m,n)-adjunction or multivariable adjunction
(Fl)1≤l≤n a (Gk)1≤k≤m : A1, ..., Am → B1, ..., Bn consists of the following data:

• functors Fl :
∏
i

Ai ×
∏
j 6=l

Bop
j → Bl for each l

13
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• functors Gk :
∏
i 6=k

Aop
i ×

∏
j

Bj → Ak for each k

• natural isomorphisms Bl(Fl(a1, ..., am, b1, ..., bn), bl) ' Ak(ak, Gk(a1, ..., am, b1, ..., bn)) for any k, l

Example 4.3 A (1,1)-adjunction between A,B is a pair of functor F : A → B and G : B → A such that
B(F (a), b) = A(a,G(b)). It is just a usual adjunction.

Example 4.4 Let (C,⊗, I) be a biclosed monoidal category. By definition (A⊗−) has a right adjoint A( −
and (− ⊗ B) has a right adjoint − › B. We get three functors ⊗ : C × C → C, (: Cop × C → C and›: Cop × C → C such that C(A⊗B,C) ' C(B,A( C) ' A, C › B, i.e. a (2, 1)-adjunction (⊗) a ((,›).

Proposition 4.5 A (m,n)-adjunction (Fl)1≤l≤n a (Gk)1≤k≤m : A1, ..., Am → B1, ..., Bn is the same thing as
a distributor P : A1 × ...×Am −7−→ B1 × ...×Bn that is representable in each of its variables.

Proof. From any of the Fl we can define a distributor Pl : A1 × ... × Am −7−→ B1 × ... × Bn representable
in Bl by Pl(−,−) := Bl(Fl(−),−). Similarly we can get distributors representable in Ak from the functors
Gk by P k(−,−) := Ak(−, Gk(−)). But all of these distributors are naturally isomorphic by definition of a
multivariable adjunction.

Conversely given a distributor P : A1× ...×Am −7−→ B1× ...×Bn, representability in the Ak and Bl produce
functors Gk with natural isomorphisms P (−,−) ' Ak(−, Gk(−)) and functors Fl with natural isomorphisms
P (−,−) ' Bl(Fl(−),−). 2

4.2.3 Fibres of a poly-refinement system and distributors between them
In the following we fix a poly-refinement system p : E → B. We define a lax normal functor ∂p : Bop → Dist by
considering the fibres of p like in the categorical case. We will use the convention that for any Γ = A1, ..., An,
p−1(Γ) := p−1(A1)× ...× p−1(Am). ∂p assigns to each object its fibre ∂p(B) := p−1(B) = {S ∈ E | p(S) = B}.
To a polymap f : ∆ → Γ in Bop, that we will equivalently consider as a polymap f : Γ → ∆ in B, is assigned
a distributor between the fibres ∂p(f) : p−1(∆) × p−1(Γ)op → Set. This distributor consists of the set of
polymaps lying over f acted on by pre- and post-composition. More precisely, given lists of objects in the
fibres Π = (R1, ..., Rm) @ Γ = (A1, ..., Am),Σ = (S1, ..., Sn) @ ∆ = (B1, ..., Bn) we define the action of the
distributor ∂p(f) on these objects by ∂p(f)(Σ,Π) := {ϕ : Π→ Σ | p(ϕ) = f}. And given lists of polymaps in

the fibre
−→
ψ = (ψi : R′i =⇒

idAi

Ri)1≤i≤m and
−→
ξ = (ξj : Sj =⇒

idBj

S′j)1≤j≤n we get ∂p(f)(
−→
ξ ,
−→
ψ ) :=

−→
ξ ◦ − ◦

−→
ψ .

This can be represented graphically.

ψ1

ψm

ξ1

ξn

−...
...

It can be noted that the polymaps in the fibre have one-object domain and codomain. This is because all
the polymaps in the fibre lies over the identity polymap in the base.

This is summarised in the following definition.

Definition 4.6 For a poly-refinement system p : E → B we define the lax normal functor ∂p : Bop → Dist by:

• For any B ∈ B, ∂p(B) := {S ∈ E | p(S) = B}
• For any f : Γ→ ∆ in B, ∂p(f) : p−1(∆) −7−→ p−1(Γ) defined by:
· For any Π @ Γ,Σ @ ∆, ∂p(f)(Σ,Π) := {ϕ : Π→ Σ | p(ϕ) = f}
· For any

−→
ψ = (ψi : R′i =⇒

idAi

Ri)1≤i≤m and
−→
ξ = (ξj : Sj =⇒

idBj

S′j)1≤j≤n, ∂p(f)(
−→
ξ ,
−→
ψ ) =

−→
ξ ◦ − ◦

−→
ψ

The proof that this defines a lax normal functor is similar to the categorical one with some extra bookkeeping
because of the presence of contexts of inputs and outputs. For example, given polymaps f : Γ → ∆1, A,∆2

and g : Γ′1, A,Γ
′
2 → ∆′ we define a natural transformation ∂p(g) ◦∂p(A) ∂p(f) ⇒ ∂p(g ◦A f) by the following

14
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p

E

B

pull[f ](Π1 Π2; Σ)
−→
ξ Σ′

−→
ψ 1

−→
ψ 2

Π′1

Π′2

f ∆

Γ1

Γ2

A

Σ′

Π′2

pull[f ]A(
−→
ξ ,
−→
ψ1,
−→
ψ2)pull[f ](Π1 Π2; Σ)

Π1

Π2

Σ

Π′1

=

pull[f ](Π′1 Π′2; Σ′)

f ∆

Γ1

Γ2

A

Fig. 1. Polymap pull[f ](Π1 Π2; Σ)→ pull[f ](Π′
1 Π′

2; Σ′)

family of multimaps:

(∂p(g) ◦∂p(A) ∂p(f))(Σ1,Σ
′,Σ2,Π

′
1,Π,Π

′
2) =

∫ R

∂p(g)(Σ′,Π′1, R,Π
′
2)× ∂p(f)(Σ1, R,Σ2,Π)

=

∫ R

{ϕ′ : Π′1, R,Π
′
2 → Σ′ | p(ϕ′) = g} × {ϕ : Π→ Σ1, R,Σ2 | p(ϕ) = f}

→ {ϕ′ : Π′1, R,Π
′
2 → Σ′ | p(ϕ′) = g} × {ϕ : Π→ Σ1, R,Σ2 | p(ϕ) = f}

→ {ϕ′′ : Π′1,Π,Π
′
2 → Σ1,Σ

′,Σ′2 | p(ϕ′′) = g ◦A f}

Now suppose that p is a bifibration and consider a polymap f : Γ1, A,Γ2 → ∆. We define a functor
pull[f ]A : p−1(∆) × p−1(Γ1)op × p−1(Γ2)op → p−1(A) by sending any Σ @ ∆,Πi @ Γi to pull[f ](Π1 Π2; Σ).

From lists of polymaps
−→
ψ1,
−→
ψ2 and

−→
ξ we get a polymap pull[f ](Π1 Π2; Σ) → pull[f ](Π′1 Π′2; Σ′) by using

the factorisation property of pull[f ](Π′1 Π′2; Σ′). It is represented in Figure 1 where the two big blank boxes
are the in-cartesian polymaps associated to the pullbacks.

By the universal property of the pullback we can link ∂p(f) and pull[f ]A in the following way.

∂p(f)(Σ,Π1,−,Π2) = {ϕ : Π1,−,Π2 → Σ | p(ϕ) = f}
= {ψ : − → pull[f ](Π1 Π2; Σ) | p(ψ) = idA}
= Homp−1(A)(−,pull[f ]A(Σ,Π1,Π2))

This makes ∂p(f) representable in A. Since by definition of a bifibration we get such a pull-functor for each
of the inputs of f and some similar push-functors for the outputs this makes ∂p(f) a multivariable adjunction.
Since it is true for any polymap f in Bop we get that ∂p factors through MAdj. Finally the fact that cartesian
polymaps compose makes ∂p : Bop →MAdj a pseudofunctor.

4.2.4 Polycategorical Grothendieck-Bénabou construction
Conversely, given a lax normal functor F : Bop → Dist we construct its polycategory of elements

∫
F .

Definition 4.7 The polycategory of elements
∫
F has:

• for objects, pairs (A,R) with A ∈ B and R ∈ F (A)

• for polymaps (f, ϕ) : (Γ,Π)→ (∆,Σ), pairs of a polymap f : Γ→ ∆ in B and an element ϕ ∈ F (f)(Σ,Π)

• for identities (idA, idR)

15
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• for composition (g, ψ) ◦(A,R) (f, ϕ) = (g ◦A f, µ((̃ϕ,ψ))) where:

· (̃ϕ,ψ) ∈ (F (g) ◦F (A) F (f))(Σ1,Σ
′,Σ2,Π

′
1,Π,Π

′
2) is the canonical element induced by the elements ϕ ∈

F (f)(Σ1, R,Σ2,Π) and ψ ∈ F (g)(Σ′,Π′1, R,Π
′
2)

· µ : F (g) ◦F (A) F (f)⇒ F (g ◦A f) is the natural transformation giving lax functoriality of F

The fact that this is a polycategory follows from the coherence laws of F . Furthermore it can be proven that
these constructions are inverse to each other using the same arguments that for the categorical constructions.

4.3 Frobenius pseudomonoids and Classical Linear Logic

Like in Section 3.5 there are different ways to define a Frobenius pseudomonoid. The most convenient in our
case will be to think of those as (the image of) a pseudofunctor out of 1.

Definition 4.8 A Frobenius pseudomonoid in a 2-polycategory C is a pseudofunctor F : 1→ C.

Using the polycategorical Grothendieck correspondence we recover the result recently advertised by Shulman
that Frobenius pseudomonoids in MAdj are equivalent to ∗-autonomous categories.

Theorem 4.9 (Shulman [Shu19]) There is a correspondence between Frobenius pseudomonoid and ∗-
autonomous categories.

Proof. Using the polycategorical Grothendieck correspondence, pseudofunctors 1 → MAdj correspond to
bifibrations p : E → 1. Then using theorem 3.9 these correspond to ∗-representable polycategories. 2

Remark 4.10 Given a Frobenius monoid (A, (m,n)A) in B and a lax normal functor F : B → Dist. The
polyfibre of A relatively to the functor

∫
F such as defined in Section 3.5 is given by the image of A (and the

polymaps (m,n)A) by F . If F is pseudo on these polymaps this forms a Frobenius pseudomonoid in Dist.
When the image of these polymaps are representable in all their variables this factors through MAdj giving a
∗-representable polycategory. This is the another way of understanding the result 3.43.

5 Conclusion and Further work

In this article we developed some of the theory of bifibred polycategories and provided examples of applications.
We started by recasting the notion of representable polycategory with duals as the equivalent notion of

∗-representable polycategory, in a way that made it clear that it is a special kind of bifibred polycategory. We
then explored examples of how this connection can be used to lift the connectives ⊗, ` and (−)∗ from the
codomain to the domain of a functor of polycategories if this functor has good fibrational properties. Since
∗-representable polycategories are equivalent to ∗-autonomous categories this helped us to analyse some models
of classical MLL from a new perspective.

In the example of Banach spaces the base polycategory is induced by a compact closed category. Compact
closed categories are known to provide good models for many different kinds of systems and processes, and have
a simple graphical language of string diagrams. In future work we would like to explore in more detail examples
of this sort. It would be interesting to study functors p : E → B where B is the underlying polycategory of
a compact closed category modelling systems and processes while E is the underlying polycategory of a ∗-
autonomous category modelling properties of those systems and processes. An example that is closely related
is the work on causal structures developed in [KU17]. In this paper the authors construct a ∗-autonomous
category of systems and causal processes out of any compact closed category of systems and processes with
some specific discard maps. The ∗-autonomous structure of the causal category can be lifted along the forgetful
functor in the same way as we have done for Banach spaces. In fact these are instances of a generic construction
that assigns to any compact closed category a ∗-representable polycategory whose objects consist of objects
of the original category together with a set of states (or global elements) with some closure condition. In the
case of causal structures, the set corresponds to the causal states while in the case of the Banach spaces it
corresponds to the (sub)normalised states, i.e., to the unit sphere (or ball). We can think of these sets as
expressing some properties about the systems by specifying the states that satisfy it.

Multicategories are highly asymmetrical in their treatment of inputs and outputs. Polycategories restore
this symmetry, which makes them an elegant object of study, but also a somewhat more complex object and
more difficult to find in nature. Just as a ∗-autonomous category can be decomposed into a pair of monoidal
categories related by a monoidal duality, we believe it is worth trying to decompose the notion of bifibration of
polycategories into a pair of fibrations of multicategories related by duality. Such an analysis would likely be
in the spirit of Cockett and Seely’s polarized polycategories [CS07] and Melliès’ chiralities [Mel16], and perhaps
related to the notion of bifibration chirality introduced in [MZ16].
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A Application to Banach spaces

In this appendix we will develop enough basic theory of Banach spaces to make the statement above precise.
Although the presentation using polycategories is new most of the results are standard and can be found in
[Rya02].

In the following we will fix a field K = R,C. Vect is the polycategory of K-vector spaces and K-polylinear
maps, where a polylinear map A1, ..., Am → B1, ..., Bn correspond to a linear map A1⊗ ...⊗Am → B1⊗ ...⊗Bn.
FVect is its subpolycategory consisting of finite dimensional vector spaces.

For a polylinear map f : A1, ..., Am → B1, ..., Bn and elements ai ∈ Ai and ϕj ∈ Bj we will write the scalar
(ϕ1, ..., ϕn)f(a1, ..., am) := (ϕ1 ⊗ ...⊗ ϕm)(f(a1 ⊗ ...⊗ am)).

Definition A.1 For a vector space V a pseudonorm or seminorm on V is a function ‖− ‖ : V → K such that

• ‖0‖ = 0

• ‖λv‖ = |λ|‖v‖ for λ ∈ K and v ∈ V
• ‖v + w‖ ≤ ‖v‖+ ‖w‖ for v, w ∈ V
A norm is a pseudonorm such that ‖v‖ = 0⇒ v = 0.

A vector space V is complete for a norm ‖ − ‖ if for any sequences (vi) ∈ KN,
∞∑
i=1

‖vi‖ = 0 implies that
∞∑
i=1

vi

converges.
A Banach space is a a complete normed vector space.

Any norm on a vector space induces a distance d(u, v) := ‖u − v‖ that defines a topology on V . So we
can talk of continuous linear maps. For a linear map to be continuous it sufficies that it is continuous in 0.
Furthermore it is equivalent to ask for the linear map to be bounded, ‖f‖ := sup

‖x‖≤1

‖f(x)‖ < ∞. We could

also ask for a scalar K ∈ K such that for any x ∈ V we have ‖f(x)‖ ≤ K‖x‖. More generally we will define a
notion of bounded polylinear maps.

Definition A.2 A polylinear map f : A1, ..., Am → B1, ..., Bn between normed vector spaces (Ai, ‖ − ‖Ai)
and (Bj , ‖ − ‖Bj ) is bounded if there is K such that for any ai ∈ Ai and any ϕj ∈ B∗j we have
|(ϕ1, ..., ϕn)f(a1, ..., am)| ≤ K

∏
i,j

‖ai‖Ai‖ϕj‖B∗j .

Proposition A.3 A unary polymap f : A→ B is bounded if it is bounded as a linear map.

Proof. Suppose that there is K such that for any x ∈ A and ϕ ∈ B∗ we have |ϕ(f(x))| ≤ K‖x‖A‖ϕ‖B∗ . Using
the Hahn-Banach theorem given f(x) ∈ B we can find ϕ ∈ B∗ such that ϕ(f(x)) = ‖f(x)‖B and ‖ϕ‖B∗ ≤ 1.
So for this choice of ϕ we get ‖f(x)‖B ≤ K‖x‖A which means that f is bounded.

Conversely suppose that there is K such that for any x ∈ A ‖f(x)‖B ≤ K‖x‖A. Then for any ϕ ∈ B∗

we have ‖ϕ‖B∗‖f(x)‖B ≤ K‖x‖A‖ϕ‖B∗ . But then by definition, ‖ϕ‖B∗ ≥ |ϕ(f(x))|
‖f(x)‖B for x 6= 0. Finally we get

|ϕ(f(x))| ≤ K‖x‖A‖ϕ‖B∗ for any x 6= 0. For x = 0 both sides are null. 2

Like in the linear case we can take the smaller such K to be the norm of f . Then a polylinear map is said
to be contractive if its norms is smaller than 1.

Definition A.4 A polylinear map f : A1, ..., Am → B1, ..., Bn between normed vector spaces (Ai, ‖−‖Ai) and
(Bj , ‖ − ‖Bj ) is contractive if for any ai ∈ Ai and any ϕj ∈ B∗j the following inequation holds:

|(ϕ1, ..., ϕn)f(a1 ⊗ ...⊗ am)| ≤
∏
i,j

‖ai‖Ai‖ϕj‖B∗j

Bounded polylinear maps compose, so do contractive ones.

Definition A.5 We define the following polycategories:

• Ban has Banach spaces for objects and bounded polylinear map as polymaps

• FBan is the subpolycategory of Ban consisting of finite dimensional Banach spaces

• Ban1 has Banach spaces for objects and contractive polylinear map as polymaps

• FBan1 consists of finite dimensional Banach spaces and contractive polymaps
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For objects in any of those polycategories to be isomorphic they need to be isomorphic as vector spaces.
Two Banach spaces (A, ‖−‖) and (A, ‖−‖′) are isomorphic in Ban and FBan1 if there are scalars K,K ′ such
that for any a ∈ A we have K‖a‖ ≤ ‖a‖′ ≤ K ′‖a‖. Such norms are called equivalent. They are equivalent in
Ban1 and FBan1 if the norms are equal. In particular FBan is not an interesting polycategory.

Proposition A.6 FBan is equivalent to FVect.

Proof. Because all norms on a finite dimensional vector space are equivalent. 2

There is are forgetful functors from these polycategories to Vect or FVect respectively. With the exception
of FBan→ FVect these are not bifibration. In the following we will focus on Ban1 and FBan1. We want to
understand what are cartesian liftings in these polycategories.

Definition A.7 Given a polylinear map f : A1, ..., Am → B1, ..., Bn, and norms ‖− ‖Ai , ‖− ‖Bj on Ai, Bj for

Ai expect Ak and all Bj , we define a function ‖ − ‖kf : Ak → K as follow:

‖x‖Ak := sup
ai,ϕj 6=0

|(ϕ1, ..., ϕn)f(a1, ..., x, ..., am)|∏
i6=k,j

‖ai‖Ai‖ϕj‖B∗j

Proposition A.8 ‖ − ‖kf is a pseudonorm on Ak.

Proof. First we want to prove that ‖0‖kf = 0. For that we will use linearity of the maps involved.

‖0‖kf = sup
ai,ϕj 6=0

|(ϕ1, ..., ϕn)f(a1, ..., 0, ..., am)|∏
i 6=k,j

‖ai‖Ai‖ϕj‖B∗j

= sup
ai,ϕj 6=0

|(ϕ1 ⊗ ...⊗ ϕn)(f(a1 ⊗ ...⊗ 0⊗ ...⊗ am))|∏
i 6=k,j

‖ai‖Ai‖ϕj‖B∗j

= sup
ai,ϕj 6=0

|(ϕ1 ⊗ ...⊗ ϕn)(f(0))|∏
i6=k,j

‖ai‖Ai‖ϕj‖B∗j

= sup
ai,ϕj 6=0

|(ϕ1 ⊗ ...⊗ ϕn)(0)|∏
i 6=k,j

‖ai‖Ai‖ϕj‖B∗j

= sup
ai,ϕj 6=0

|0|∏
i 6=k,j

‖ai‖Ai‖ϕj‖B∗j

= sup
ai,ϕj 6=0

0

= 0

Similarly using linearity of the maps and the fact that | − | is a norm we get that ‖λx‖kf = |λ|‖x‖kf and

‖x+ y‖kf ≤ ‖x‖kf + ‖y‖kf . 2

We want to characterise these polymaps for which this pseudonorm is a norm.

Definition A.9 A polylinear map f : A1, ..., Am → B1, ..., Bn is called injective in Ak or Ak-injective if the
following condition is true (∀ai, f(a1, ..., x, ..., am) = 0)⇒ x = 0

Definition A.10 For a polylinear map f : A1, ..., Am → B1, ..., Bn its Ak-kernel is the set

KerAk(f) := {x ∈ Ak | f(a1, ..., x, ..., am) = 0 ∀ai}

.

The Ak-kernel of a polylinear map forms a vector space. The polylinear map is Ak-injective if its Ak-kernel
is trivial. Furthermore we have that KerAk(f) = {x ∈ Ak | (ϕ1, ..., ϕn)f(a1, ..., x, ..., am) = 0 ∀ai} by linearity
of

⊗
i

ϕi.
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Remark A.11 For a unary map f : A→ B to be A-injective means that it is injective as a linear map.

Proposition A.12 For a polylinear map f : A1, ..., Am → B1, ..., Bn and norms ‖−‖Ai , ‖−‖Bj the pseudonorm

‖ − ‖kf is a norm iff f is Ak-injective.

Furthermore if Ak is infinite dimensional we note Âk its completion with respect to the norm ‖ − ‖kf .

Proposition A.13 Given a Ak-injective polylinear map f : A1, ..., Am → B1, ..., Bn and norms ‖−‖Ai , ‖−‖Bj ,
the norm ‖ − ‖kf makes f contractive.

Proof. By definition we have ‖ak‖kf ≥ |(ϕ1,...,ϕn)f(a1,...,x,...,am)|∏
i6=k,j

‖ai‖Ai‖ϕj‖B∗j
for any ai, ϕj . So

|(ϕ1, ..., ϕn)f(a1, ..., x, ..., am)| ≤
∏
i 6=k,j

‖ai‖Ai‖ak‖kf‖ϕ‖Aj . But this is exactly what it means for f to be

contractive. 2

This norm defines a pullback in Ban1,FBan1.

Proposition A.14 Given a B-injective polylinear map g : Γ′1, A,Γ
′
2 → ∆′ with Γ′i = A′i,1, ..., A

′
i,m′i

and ∆′ =

B′1, ..., B
′
n we fix families of norm ‖−‖Γ′i = (‖−‖A′i,j ) and ‖−‖∆ makes there respective vector spaces complete.

Then pull[g]((Γ′1, ‖ − ‖Γ′1) (Γ′2, ‖ − ‖Γ′2); (∆, ‖ − ‖∆)) = (Â, ‖ − ‖g).

Proof.
Take a polylinear map f : Γ → ∆1, A,∆2 and families of norms ‖ − ‖Γ, ‖ − ‖∆1 , ‖ − ‖∆2 that makes the

corresponding vector spaces complete. Furthermore suppose that g ◦A f is contractive. We want to prove that
f is contractive when A is equipped with the norm ‖ − ‖g.

Before starting the proof we should fix some notations. We will note −→ϕ 1 a tuple of elements of ∆∗1. Similarly
we will have −→ϕ ′,−→ϕ 2. Finally we will have −→a ′1,−→a ,−→a ′2 for tuples of the Γs. We will note ‖−→a ‖Γ :=

∏
‖ai‖Ai

and similarly for other tuples. Often we will omit the subscripts on the norms when they can be infered from
the context. Also notice that

(−→ϕ 1,
−→ϕ ′,−→ϕ 2)(g ◦A f)(−→a ′1,−→a ,−→a ′2) = (−→ϕ ′)g(−→a ′1, (−→ϕ 1, idA,

−→ϕ 2)f(−→a ),−→a ′2) (A.1)

where (−→ϕ 1, idA,
−→ϕ 2)f(−→a ) := (−→ϕ 1 ⊗ idA ⊗−→ϕ 2) ◦ f is a multilinear function into A.

To prove that f is contractive we need to prove that for any −→ϕ 1,
−→ϕ 2,
−→a and any α ∈ A∗

|(−→ϕ 1, α,
−→ϕ 2)f(−→a )| ≤ ‖−→ϕ 1‖‖−→ϕ 2‖‖−→a ‖‖α‖′g

where ‖ − ‖′g is the norm dual to ‖ − ‖g. Without loss of generality we can take the tuples to not contain 0.
By expanding the definition we need to prove

|(−→ϕ 1, α,
−→ϕ 2)f(−→a )|

‖−→ϕ 1‖‖−→ϕ 2‖−→a ‖
≤ sup

x6=0

|α(x)|
‖x‖g

We only need to find one x for which this inequality holds. Take x = (−→ϕ 1, idA,
−→ϕ 2)f(−→a ). We have that

α(x) = (−→ϕ 1, α,
−→ϕ 2)f(−→a ). So we just need to prove ‖(−→ϕ 1, idA,

−→ϕ 2)f(−→a )‖g ≤ ‖−→ϕ 1‖‖−→ϕ 2‖‖−→a ‖. By expanding

the definition of the norm we want sup
|(−→ϕ ′)g(−→a ′1,(

−→ϕ 1,idA,
−→ϕ 2)f(−→a ),−→a ′2)|

‖−→ϕ ′‖‖−→a ′1‖‖
−→a ′2‖

≤ ‖−→ϕ 1‖‖−→ϕ 2‖‖−→a ‖. Which means that

we need to prove that for any −→ϕ 1,
−→ϕ ′,−→ϕ 2,

−→a ′1,−→a ,−→a ′2 we have

|(−→ϕ ′)g(−→a ′1, (−→ϕ 1, idA,
−→ϕ 2)f(−→a ),−→a ′2)| ≤ ‖−→ϕ 1‖‖−→ϕ ′‖‖−→ϕ 2‖‖−→a ′1‖‖−→a ‖‖−→a ′2‖

But then using A.1,

|(−→ϕ 1,
−→ϕ ′,−→ϕ 2)(g ◦A f)(−→a ′1,−→a ,−→a ′2)| ≤ ‖−→ϕ 1‖‖−→ϕ ′‖‖−→ϕ 2‖‖−→a ′1‖‖−→a ‖‖−→a ′2‖

This is true because g ◦A f is contractive. 2

This means that we can take the in-cartesian lifting of any polymap that is injective in the input considered.
This injectivity is only needed for ‖ − ‖f to be a norm.
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Corollary A.15 There are polycategories Banps
1 ,FBanps

1 of complete seminormed vector spaces and contrac-
tive polylinear maps that come with forgetful functors that are pull-fibred.

Now we want to determine which polylinear maps have out-cartesian liftings.

Definition A.16 Given a polylinear map f : Γ → ∆1, A,∆2 and families of norms ‖ − ‖Γ, ‖ − ‖∆1
, ‖ − ‖∆2

,
we define a function ‖ − ‖f : Bk → K̄ where K̄ is the completion of K, i.e. we add a point at the infinity.

‖y‖f := inf
y=

∑
i

(−→ϕ 1,i,idA,
−→ϕ 2,i)f(−→a i)

∑
i

‖−→ϕ 1,i‖‖−→ϕ 2,i‖‖−→a i‖

where the sum is done on all the possible decompositions of y =
∑
i

(−→ϕ 1,i, idA,
−→ϕ 2,i)f(−→a i).

Proposition A.17 ‖ − ‖f is an extended norm, i.e. a norm with value in K̄.

Definition A.18 A polylinear map f : Γ → ∆1, A,∆2 is called A-surjective if for any y ∈ A there exist−→ϕ 1,i,
−→ϕ 2,i,

−→a i such that y =
∑
i

(−→ϕ 1,i, idA,
−→ϕ 2,i)f(−→a i).

The A-image of f is the set ImA(f) := {
∑
i

(−→ϕ 1,i, idA,
−→ϕ 2,i)f(−→a i)}.

Proposition A.19 ImA(f) forms a vector space. f is A-surjective iff ImA(f) = A.

Remark A.20 A linear map is B-surjective iff it is surjective. Indeed if for y ∈ B there are xi such that
y =

∑
i

f(xi) then by linearity y = f(
∑
i

xi).

Proposition A.21 Given a polylinear map f : Γ→ ∆1, A,∆2 and families of norms ‖ − ‖Γ, ‖ − ‖∆1
, ‖ − ‖∆2

,
‖ − ‖f is a norm iff f is A-surjective.

Proof. The value of ‖y‖f is non-finite iff we are taking the infimum over the empty set which means that y is
not in the A-image of f . 2

Proposition A.22 For f : Γ → ∆1, A,∆2 a A-surjective polylinear map and the families of norms as usual,
‖ − ‖f makes f contractive.

Proof. We want to prove that for any −→ϕ 1,
−→ϕ 2,
−→a and any α ∈ A∗ |(−→ϕ 1, α,

−→ϕ 2)f(−→a )| ≤ ‖−→ϕ 1‖‖−→ϕ 2‖‖−→a ‖‖α‖′

where ‖ − ‖′ is the norm dual to ‖ − ‖f . So we want |(−→ϕ 1, α,
−→ϕ 2)f(−→a )| ≤ ‖−→ϕ 1‖‖−→ϕ 2‖‖−→a ‖ sup

y

|α(y)|
‖y‖f . We just

need to find a value of y that satisfy the following inequality: |(−→ϕ 1, α,
−→ϕ 2)f(−→a )|‖y‖f ≤ ‖−→ϕ 1‖‖−→ϕ 2‖‖−→a ‖|α(y)|

Take y = (−→ϕ 1, idA,
−→ϕ 2)f(−→a ), by definition ‖(−→ϕ 1, idA,

−→ϕ 2)f(−→a )‖f ≤ ‖−→ϕ 1‖‖−→ϕ 2‖‖−→a ‖. Furthermore α(y) =
(−→ϕ 1, α,

−→ϕ 2)f(−→a ). So by multiplying on both side by α(y) we get the inequality that we wanted. 2

This norms define a pushforward on Ban1,FBan1.

Proposition A.23 For f : Γ → ∆1, A,∆2 a A-surjective polylinear map and the families of norms as usual,

push〈f〉(Γ; ∆1 ∆2) = (Â, ‖ − ‖f ).

Proof. Suppose that g : Γ′1, A,Γ
′
2 → ∆′ is such that g◦A f is contractive. Consider any −→ϕ ′,−→a ′1,−→a ′2 and y ∈ A.

Since f is A-surjective we can find a decomposition of y =
∑
i

(−→ϕ 1,i, idA,
−→ϕ 2,i)f(−→a i) that reaches the infimum,
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i.e. such that ‖y‖f =
∑
‖−→ϕ 1,i‖‖−→ϕ 2,i‖‖−→a i‖. Then we have

|(−→ϕ ′)g(−→a ′1, y,−→a ′2)| = |(−→ϕ ′)g(−→a ′1,
∑
i

(−→ϕ 1,i, idA,
−→ϕ 2,i)f(−→a i),−→a ′2)|

= |
∑
i

(−→ϕ ′)g(−→a ′1, (−→ϕ 1,i, idA,
−→ϕ 2,i)f(−→a i),−→a ′2)|

= |
∑
i

(−→ϕ 1,i,
−→ϕ ′,−→ϕ 2,i)(g ◦A f)(−→a ′1,−→a i,−→a ′2)|

≤
∑
i

|(−→ϕ 1,i,
−→ϕ ′,−→ϕ 2,i)(g ◦A f)(−→a ′1,−→a i,−→a ′2)|

≤
∑
i

‖−→ϕ 1,i‖‖−→ϕ ′‖‖−→ϕ 2,i‖‖−→a ′1‖‖−→a i‖‖−→a ′2‖

= ‖−→ϕ ′‖‖−→a ′1‖‖−→a ′2‖
∑
i

‖−→ϕ 1,i‖‖−→ϕ 2,i‖‖−→a i‖

= ‖−→ϕ ′‖‖−→a ′1‖‖−→a ′2‖‖y‖f

where we used in order, (1) definition of y, (2) linearity, (3) definition of the composition, (4) triangle inequality
for the norm | − |, (5) contractivity of g ◦A f , (7) that the decomposition consider reach the infimum. This
inequality is what is needed to prove that g is contractive. 2

This means that we can take the out-cartesian lifting of any polymap that is surjective in the considerd
output.

Corollary A.24 There are polycategories Banex
1 ,FBanex

1 ,Banex,ps
1 ,FBanex,ps

1 of extended normed vector
spaces and extended seminormed vector spaces that come with forgetful functors that are push-fibred and bifibred.

Even when considering Ban1,FBan1 there are enough cartesian polymaps to lift the representability and
∗-representability of Vect and FVect to them.

Proposition A.25 In Vect,FVect, the universal polylinear maps A,B → A ⊗ B and A ⊗ B → A,B are
A⊗B-surjective and A⊗B-injective. In FVect, the universal polylinear maps A∗, A→ is A∗-injective.

Proof. By definition of the tensor product any u ∈ A⊗B is a linear combination of elements from A and B,
u =

∑
i

ai ⊗ bi. A⊗B-injectivity is trivial. Finally given ϕ ∈ A∗ if for all a ∈ A ϕ(a) = 0 then ϕ = 0. 2

Corollary A.26 The category of finite dimensional Banach spaces and contractive linear maps is ∗-
autonomous.

The norm that we get on the dual is the usual dual norms. For the tensor and par we get back well-known
norms.

Definition A.27 Let (A, ‖ − ‖A) and (B, ‖ − ‖B) be two Banach spaces.
The projective crossnorm is the norm defined as follow ‖u‖A⊗B := inf

u=
∑
i
ai⊗bi

‖ai‖A‖bi‖B .

The injective crossnorm is the norm defined by ‖u‖A`B := sup
‖ϕ‖A∗ ,‖ψ‖B∗≤1

|(ϕ⊗ ψ)(u)|

These are the norms that we get by taking the pushforward along A,B → A ⊗ B and the pullback along
A ⊗ B → A,B. So we deduce immediately that they are the norms that make (the completion of) A ⊗ B a
tensor/par in FBan1. These norms are known to be extremal into the set of well-behaved norms that we can
put on the tensor product.

Definition A.28 Let (A, ‖ − ‖A) and (B, ‖ − ‖B) be two Banach spaces. A norm ‖ − ‖ on A ⊗ B is said to
be a crossnorm if for any a, b ∈ A × B we have ‖a ⊗ b‖ ≤ ‖a‖A‖b‖B and for any ϕ,ψ ∈ A∗ ⊗ B∗ we have
‖ϕ⊗ ψ‖′ ≤ ‖ϕ‖A∗‖ψ‖B∗ with ‖ − ‖′ the norm dual to ‖ − ‖.

Remark A.29 It would have been equivalent to ask for equalities in the definition. A proof can by found in
[Rya02].

Proposition A.30 A norm on A ⊗ B is a crossnorm iff it makes the polylinear maps A,B → A ⊗ B and
A⊗B → A,B contractive.
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Proof. By definition. 2

The injective and projective crossnorms are indeed crossnorms. The following property of the injective and
projective crossnorm is known. It is this property that first make us consider the injective crossnorm as a
potential candidate for interpreting the par. Getting a conceptual comprehension of why this intuition was
true is what motivated the theory developed in this paper.

Proposition A.31 Let ‖ − ‖ be a crossnorm then for any u ∈ A⊗B we have ‖u‖A`B ≤ ‖u‖ ≤ ‖A⊗B

Proof. We have that A,B → A ⊗ B factors through itself followed by idA⊗B . Since ‖ − ‖ is a crossnorm
(A, ‖− ‖A), (B, ‖− ‖B)→ (A⊗B, ‖− ‖) is contractive. But then since (A⊗B, ‖− ‖A⊗B) is a pullback we can
use its universal property to factor (A, ‖−‖A), (B, ‖−‖B)→ (A⊗B, ‖−‖) throught (A, ‖−‖A), (B, ‖−‖B)→
(A⊗B, ‖−‖A⊗B). This means that the identity map lift to a contractive map (A⊗B, ‖−‖A⊗B)→ (A⊗B, ‖−‖).
In other words for any u ∈ A⊗B, ‖u‖ ≤ ‖u‖A⊗B . Similarly we can use the fact that A`B is a pushforward
to get the other inequality. 2

Remark A.32 More than just a model of classical MLL (without negation), FBan1 (Ban1) is a model of
classical MALL (without negation). The additive connectives are given by the vector space A ⊕ B with the
norms ‖(a, b)‖1 :=

∑
i

‖a‖A + ‖b‖B and ‖(a, b)‖∞ := max(‖a‖A, ‖b‖B). These norms are extremal amongst the

p-norms.

B Categorical Grothendieck correspondences

We recall a range of categorical Grothendieck correspondences that goes as follow:

• Functor E → B ←→ Lax normal functor B → Dist

• Fibration E → B ←→ pseudofunctor B → Cat

• Opfibration E → B ←→ pseudofunctor B → Catop

• Bifibration E → B ←→ pseudofunctor B → Adj

Where Dist is the bicategory of (small) categories and distributors/profunctors and Adj is the 2-category
of (small) categories and adjunctions. Notice that Cat, Catop and Adj are all subbicategories of Dist corre-
sponding to distributors A −7−→ B that are representable in A, in B, and in both, respectively.

Let us look at the details of this correspondence. We will first look at the left-to-right direction. Suppose
that you have a functor p : E → B we want to get a lax normal functor ∂p : B → Dist. We do that by
considering the fibers over B.

∂p : B → Dist

B 7→ p−1(B) := {E ∈ E | p(E) = B}

f : B → B′ 7→
∂p(f) : p−1(B)op × p−1(B′)→ Set

(E,E′) 7→ {ϕ : E → E′ | p(ϕ) = f}
(ψ, ξ) 7→ ξ ◦ − ◦ ψ

We can see that this defines a lax normal functor.

(∂p)(idB)(E,E′) = {ϕ : E → E′ | p(ϕ) = idB} = Homp−1(B)(E,E
′)

(∂p)(idB)(ψ, ξ) = ξ ◦ − ◦ ϕ = Homp−1(B)(ϕ, ξ)

So ∂p(idB) = Homp−1(B) which is the identity profunctor. We also want to find a natural transformation
(∂p)(f ′) ◦ (∂p)(f)⇒ (∂p)(f ′ ◦ f). By definition we have

((∂p)(f ′) ◦ (∂p)(f))(E,E′′) =

∫ E′

((∂p)(f ′)× (∂p)(f))(E,E′′)

=

∫ E′

{ϕ′ : E′ → E′′ | p(ϕ′) = f ′} × {ϕ : E → E′ | p(ϕ) = f}
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Then for any E′ we get a function

∫ E′

{ϕ′ : E′ → E′′ | p(ϕ′) = f ′}×{ϕ : E → E′ | p(ϕ) = f} → {ϕ′ : E′ → E′′ | p(ϕ′) = f ′}×{ϕ : E → E′ | p(ϕ) = f}

And finally a function

{ϕ′ : E′ → E′′ | p(ϕ′) = f ′} × {ϕ : E → E′ | p(ϕ) = f} → {ϕ′′ : E → E′′ | p(ϕ′′) = f ′ ◦ f}

by taking ϕ′′ = ϕ′ ◦ ϕ and using functoriality of p, p(ϕ′ ◦ ϕ) = p(ϕ′) ◦ p(ϕ) = f ′ ◦ f .
The morphism that we get does not depend on the choice of E′ by the universal property of the coend. We

still need to prove the naturality condition and the coherence laws for a lax functor. This is left to the reader.
Now suppose that we want for ∂p to factor through Cat ↪→ Dist. This means that for any f : B → B′ we

want a functor p∗(f) : p−1(B′)→ p−1(B) such that ∂p(f) = Homp−1(B)(−, p∗(−)). If we unravel the definition

we get a correspondence:
E

ϕ
=⇒
f
E′

E
ϕ̃

==⇒
idB

p∗(f)(E′)

such that for any polymaps ψ : E2 → E1, ξ : E′1 → E′2 and

ϕ : E1 → E′1 we have ξ◦ϕ◦ψ = p∗(f)(ξ)◦ϕ̃◦ψ. In particular for ψ = idE and ξ = idE′ then ϕ = p∗(f)(idE′)◦ϕ̃.
This is the factorisation property of a weak cartesian morphism. A functor such that all the weak cartesian
morphisms exists is a prefibration. It is a fibration if weak cartesian morphisms compose. This enforces for ∂p
to be a pseudofunctor and not just lax.

Similarly asking for factorisation through Catop ↪→ Dist corresponds to representability of ∂p(f) on its
second variable while factorisation through Adj ↪→ Dist is representability in both variables. Combined with
pseudofunctoriality this enforced ∂p to be an opfibration and a bifibration respectively.

Conversely, let F : B → Dist be a lax normal functor. We want to get a category
∫
F and a functor∫

F → B. This is often called the Grothendieck construction, especially when restricted to pseudofunctors
F : B → Cat. This can be obtained by considering the functor Dist∗ → Dist from pointed distributors that

forget about the point and consider the pullback

∫
F Dist∗

B Dist

y but for this to be well-defined there are

some size considerations. Furthermore this will only give a lax functor
∫
F → B. That

∫
F is a category has

to be prove separately. We want to advertise another way to construct
∫
F that is closer to the philosophy of

this paper, using some notion of opcartesian 2-morphisms.
We will work in a slightly more general framework first. Let B be a category, C and D be bicategories,

F : B → C be a lax functor and p : D → C a strict functor. Furthermore suppose that for any 2-morphism
α : f ⇒ g in C and any morphism ϕ in D lying over f , i.e. p(ϕ) = f , there is a morphism pushα(ϕ) over
g and an opcartesian 2-morphism ϕ → pushα(ϕ) lying over α. We now define a bicategory

∫
p
F . Its objects

are pairs of objects (B,D) from B and D such that F (B) = p(D). Similarly morphisms are pair of mor-
phisms with the same image and 2-morphisms correspond to vertical 2-morphisms in D. Given (B,D) an
object of

∫
p
F we want to define id(B,D) = (f, ϕ). We can take f = idB . Then we have F (f) = F (idB).

We would like to take ϕ = idD but p(idD) = idp(D) = idF (B) 6= F (idB). However we have a 2-morphism
ηB : F (idB) ⇒ idF (B) from the lax functoriality of F . By using the fibrational property of p we can
get an object over idF (B) by lifting idD along ηB . So we have id(B,D) = (idB , pushηB (idD)). Similarly,
(g, ψ) ◦ (f, ϕ) = (g ◦ f, pushµF (f),F (g)

(ψ ◦ ϕ)) where µF (f),F (g) : F (g) ◦ F (f) ⇒ F (g ◦ f). Then we can prove
that this are unital and associative up to isomorphism by using the same fact for B and D and the lax
property of F and fibrational property of p. For example to prove right unitality of identity we consider:
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D D D′ D D D′

F (B) F (B) F (B′) = F (B) F (B) F (B′)

idD

pushη(idD)

pushµ(ϕ◦pushη(idD))

ϕ idD

ϕ

ϕ

unitD

idF (B)

F (idB)

F (f)

η

F (f)

µ

idF (B)

F (f)

F (f)

unitF (B)

unitF (B) and unitD are 2-isomorphisms that comes from the bicategorical structure of C and D. The bottom
equality comes from lax functoriality of F . Now using the universal property of cocartesian 2-morphisms we can
factors unitD through pushη(idD) and then through the second pushforward to get a vertical 2-morphism χ :
pushµ(ϕ◦pushη(idD)) ====⇒

idF (f)

ϕ. And we get a vertical 2-morphism χ−1 in the other direction by precomposing

the diagram on the upper left corner with unit−1
D . By definition we have χ ◦ χ−1 = unitD ◦ unit−1

D = idϕ. We
get χ−1 ◦χ = idpushη(ϕ◦pushµ(idD)) by using the uniqueness of factorisation through a opcartesian 2-morphism.
So left unitality of the identity holds up to vertical 2-isomorphism.

We get the following commutative diagram

∫
p
F D

B C

p

F

by considering the projection functors from
∫
p
F .

We get back the Grothendieck construction by taking p : Dist∗ → Dist the forgetful functor. Let show that it
has opcartesian 2-morphism. Given P,Q : A −7−→ B and α : P ⇒ Q in Dist, a morphism (P,ϕ) : (A, a)→ (B, b)
in Dist∗ over P is given by an element ϕ ∈ P (a, b). Then we can use αa,b : P (a, b)→ Q(a, b) to get a morphism
(Q,αa,b(ϕ)) : (A, a) → (B, b) over Q with a 2-morphism α : (P,ϕ) ⇒ (Q,αa,b(ϕ)). This is an opcartesian 2-
morphism because for any 2-morphism in Dist there is at most one 2-morphism over it for some given domain
and codomain. So we get

∫
F :=

∫
p
F for this particular choice of p. If we expand the definition the objects

of
∫
F consists of pairs of objects (B,D) such that B ∈ B, D ∈ Dist∗ and F (B) = p(D). Expanding a little

more D = (X,x) a pointed set such that F (B) = X. So it is just the data of a point in F (B). Similarly, a
morphism (f, ϕ) : (B, x) → (C, y) is a morphism f : B → C in B and an element ϕ ∈ F (f)(x, y). Finally a
2-morphism is a vertical 2-morphism in Dist∗. But the only vertical morphisms are the identities. That makes∫
F a category.

These constructions are inverse to each other. First let start with F : B → Dist. Let fix an object B ∈ B.
The fiber over B in

∫
F is the set of objects (B, x) with x ∈ F (B), which is isomorphic to the set F (X).

The profunctor (∂
∫
F )(f) is just F (f). Conversely, given p : E → B,

∫
∂p as for objects pairs (B, x) with

B ∈ B and x ∈ (∂p)(B). But then (∂p)(B) = p−1(B). So Ob(
∫
∂p) = {(B,E) | p(E) = B} = ob(E). Similarly

Hom∫
∂p((B,E), (B′, E′)) = {(f, ϕ) : B × E → B′ × E′ | p(ϕ) = f} = HomE(E,E

′).
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