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Introduction

Categorical models of multiplicative linear logic

Intuitionistic MLL (⊗, 1,(): monoidal closed categories

Classical MLL (⊗, 1,`,⊥,−∗)
∗-autonomous categories (Barr 1991)

linearly distributive categories (Cockett and Seely 1997)
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Introduction

Multicategorical models of intuitionistic sequent calculus

An old idea2: replace categories by multicategories

Multimaps A1, ...,An → B

Inspired by linear algebra and sequent calculus (composition = cut)

⊗, 1,( can all be defined by universal properties

2Made explicit by Lambek (1969), and implicit in his earlier work.
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Introduction

Polycategorical models of classical sequent calculus

Another old idea: replace multicategories by polycategories

Polymaps A1, ...,Am → B1, ...,Bn

Originally used to model classical sequent calculus (Szabo 1975)

Used to model MLL by Cockett and Seely, in a “two tensor
polycategory with duals”, a.k.a. representable ∗-polycategory
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Introduction

Fibrations of multicategories

Hermida (2000) observed several analogies between multicategory theory
and fibred category theory. These analogies can be made rigorous via the
notion(s) of multicategorical fibration. . .
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Introduction

Fibrations of multicategories

Covariant fibration of multicategories:

Discussed by Hermida (2004)

Monoidal category = multicategory fibred over 1

Algebra for an operad P = discrete fibration over P

Contravariant/bi-fibration of multicategories:

Used in recent work of Licata, Shulman, and Riley (2017)

Closely related to (bi)fibrations of (monoidal) closed categories

Monoidal closed category = multicategory bifibred over 1

An important asymmetry: pullback along a multimap is parameterized by
a choice of input object.
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Introduction

Our paper

Contribution #1: definition of in-universal and out-universal polymaps

Notion of universality parameterized by an input or output object

All of the MLL connectives (including negation) can be characterized
by the existence of certain universal polymaps

Definition: a polycategory is ∗-representable if it has all universal polymaps

Theorem

P is ∗-representable iff it is a representable ∗-polycategory.
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Introduction

Our paper

Contribution #2: definition of (bi)fibrations of polycategories

Notion of in-cartesian and out-cartesian polymaps, generalizing
in-universal and out-universal

∗-autonomous category = polycategory bifibred over 1

One motivation: understand how compact closed structure on f-d vector
spaces lifts to a ∗-autonomous structure on f-d Banach spaces, with ⊗ of
vector spaces refined by the projective (⊗) and injective (`) crossnorms.
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Introduction

Our paper

Contribution #3: polycategorical Grothendieck correspondences

A collection of Grothendieck correspondences for different classes of
poly-refinement systems (functors of polycategories)

The bifibrational case recovers Shulman’s recent observation that
∗-autonomous categories are Frobenius pseudomonoids in MAdj, the
2-polycategory of multivariable adjunctions
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∗-representable polycategories and universal polymaps

Polycategories

Definition (Polycategory)

A (planar) polycategory P has:

A collection of objects

For Γ,∆ finite lists of objects, a set of polymaps P(Γ; ∆)

Identities idA : A→ A

Composition:
f : Γ→ ∆1,A,∆2 g : Γ′1,A, Γ

′
2 → ∆′

g ◦A f : Γ′1, Γ, Γ
′
2 → ∆1,∆

′,∆2

Planarity of ◦: (Γ′1 = {} ∨∆1 = {}) ∧ (Γ′2 = {} ∨∆2 = {})
With unitality, associativity and two interchange laws
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∗-representable polycategories and universal polymaps

Composition of polymaps (graphically)

A
fg

Γ′1

Γ′2

∆′fΓ

∆1

∆2

Planarity is also known as no-crossing condition (wires should not cross)
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∗-representable polycategories and universal polymaps

Interchange laws (graphically)

f

g

h

f

g

h=
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∗-representable polycategories and universal polymaps

Examples

Example

There is a terminal polycategory 1. It has one object ∗ and a unique arrow
(m, n) : ∗m → ∗n for each arities m, n.

Example

Any linearly distributive category C (and ∗-autonomous category) gives a
polycategory with polymaps f : A1 ⊗ ...⊗ Am → B1 ` ...` Bn.

Example

In particular any monoidal category gives a polycategory with the same
objects and with polymaps f : A1 ⊗ ...⊗ Am → B1 ⊗ ...⊗ Bn.
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∗-representable polycategories and universal polymaps

Sequent calculus rules for MLL (fragment)

Γ1,A,B, Γ2 ` ∆ ⊗L
Γ1,A⊗ B, Γ2 ` ∆

Γ ` ∆,A Γ′ ` B,∆′ ⊗R
Γ, Γ′ ` ∆,A⊗ B,∆′

Γ,A ` ∆ B, Γ′ ` ∆′ `L
Γ,A` B, Γ′ ` ∆,∆′

Γ ` ∆1,A,B,∆2 `RΓ ` ∆1,A` B,∆2

Γ,A ` ∆ ∗L
Γ ` A∗,∆

Γ ` A,∆ ∗R
Γ,A∗ ` ∆
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∗-representable polycategories and universal polymaps

⊗ in a polycategory

A tensor of A and B is an object A⊗ B equipped with a binary map

m : A,B → A⊗ B

with the following universal property:

Γ1,A,B, Γ2 ∆

Γ1,A⊗ B, Γ2

f

m ⊗Lf

Induces a natural isomorphism:

P(Γ1,A,B, Γ2; ∆) ' P(Γ1,A⊗ B, Γ2; ∆)

N. Blanco and N. Zeilberger Bifibrations of Polycategories and CLL MFPS36, June 2020 16 / 42



∗-representable polycategories and universal polymaps

` in a polycategory

A par of A and B is an object A` B equipped with a co-binary map

w : A` B → A,B

with the following universal property:

Γ ∆1,A,B,∆2

∆1,A` B,∆2

`R f

f

w

Induces a natural isomorphism:

P(Γ; ∆1,A,B,∆2) ' P(Γ; ∆1,A` B,∆2)
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∗-representable polycategories and universal polymaps

−∗ in a polycategory

A (right) dual of A is an object A∗ equipped with polymaps

rcupA : · → A,A∗ and rcapA : A∗,A→ ·

satisfying the equations (“snake identities”):

rcupA ◦A∗ rcapA = idA and rcapA ◦A rcupA = idA∗

Induces a natural isomorphism:

P(Γ,A; ∆) ' P(Γ;A∗,∆)

A representable ∗-polycategory is a polycategory with all tensors, pars, left
and right duals.
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∗-representable polycategories and universal polymaps

A parameterized notion of universality

Definition

u : Γ→ ∆1,A,∆2 out-universal in A, written u : Γ→ ∆1,A,∆2 if for
any polymap h : Γ1, Γ, Γ2 → ∆1,∆,∆2, there is a unique polymap
h/u : Γ1,A, Γ2 → ∆ such that h = h/u ◦A u.

n : Γ1,A, Γ2 → ∆ is in-universal in A, written n : Γ1,A, Γ2 → ∆ if for
any polymap h : Γ1, Γ, Γ2 → ∆1,∆,∆2 there is a unique polymap
n\h : Γ→ ∆1,A,∆2 such that h = n ◦A n\h.

u h/u

∆1

∆2

∆Γ

Γ1

Γ2

h

n\h n

∆1

∆2

∆Γ

Γ1

Γ2

h

(∗)
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∗-representable polycategories and universal polymaps

∗-representable polycategories

Definition

A polycategory is ∗-representable if it has all in-universal and out-universal
objects, in the sense that:

for any Γ1, Γ2,∆ there is an object A and a polymap Γ1,A, Γ2 → ∆

for any Γ,∆1,∆2 there is an object A and a polymap Γ→ ∆1,A,∆2

Theorem

P is a representable ∗-polycategory iff it is ∗-representable.
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∗-representable polycategories and universal polymaps

∗-representable ⇒ representable ∗-polycategory

Tensor is out-universal: m⊗ : Γ→
⊗

Γ

Par is in-universal: w` :
˙

∆→ ∆

Right dual is out-universal: rcupA : · → A,A∗

Right dual is also in-universal rcapA : A∗,A→ ·

Remark

rcupA and rcapA are also universal in A
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∗-representable polycategories and universal polymaps

representable ∗-polycategory ⇒ ∗-representable

For Γ,∆1,∆2 we get an out-universal polymap Γ→ ∆1,A,∆2:

AΓ

⊗

⊗

⊗

∆1

∆2

∆∗1

∗∆2
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Bifibrations of polycategories

Poly-refinement systems

A poly-refinement system is a (strict) functor of polycategories p : E → B.

(Terminology inspired from study of type refinement systems.)
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Bifibrations of polycategories

Poly-refinement systems (graphically)

Vertically, with the top diagram living in E and the bottom diagram in B
in such a way that an object and polymaps are directly above their image.
For example preservation of composition is given by:

R

A

fψ

Π′1

Π′2

Σ′ϕΠ

Σ1

Σ2

fg

Γ′1

Γ′2

∆′fΓ

∆1

∆2

E

B
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Bifibrations of polycategories

Cartesian polymaps (graphically)

Graphically, the definitions are summarized in the following diagram:

p

ψ\ξ ψ

Σ′1

Σ′2

ΣΠ′

Π1

Π2

ξ

f g

∆′1

∆′2

∆Γ′

Γ1

Γ2

g ◦A f

E

B

ϕ ξ/ϕ

Σ′1

Σ′2

ΣΠ′

Π1

Π2

ξ

f g

∆′1

∆′2

∆Γ′

Γ1

Γ2

g ◦B f

in-cartesian out-cartesian

(†)
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Bifibrations of polycategories

Cartesian liftings (example)

Π1

Π2

??

Γ1

Γ2

fA

E

B
∆

Σ
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Bifibrations of polycategories

Polycategorical (bi)fibrations

Fix a poly-refinement system p : E → B

Definition

p is a pull-fibration if it has all in-cartesian liftings.

p is a push-fibration if it has all out-cartesian liftings.

p is a bifibration if it is both a pull-fibration and push-fibration.
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Bifibrations of polycategories

∗-representable polycategory = bifibration over 1

The notion of (in/out-)cartesian polymap immediately generalizes that of
(in/out-)universal polymap.

In particular, a polycategory P is ∗-representable iff the terminal
poly-refinement system ! : P → 1 is a bifibration.

As a corollary, a ∗-autonomous category is “just” a polycategory fibred
over the terminal polycategory!
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Bifibrations of polycategories

Application: lifting of ∗-autonomous structure

Even if p : E → B is not a bifibration, it may have some cartesian liftings.
It is interesting to consider liftings of universal polymaps.

Proposition

In-cartesian liftings of in-universal polymaps are in-universal.
Out-cartesian liftings of out-universal polymaps are out-universal.

Corollary

If B is ∗-representable and E has all cartesian liftings of universal polymaps
then E is ∗-representable.
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Bifibrations of polycategories

Example: Banach spaces

Example

There are polycategories Vect and FVect of (finite dimensional) vector
spaces and polylinear maps.

Example

There are polycategories Ban1,FBan1 of (finite dimensional) Banach
spaces and contractive (norm-non-increasing) polylinear maps.

f : A1, ...,Am → B1, ...,Bn contractive: |(ϕ1, ..., ϕn)f (a1, ..., am)| ≤
∏
i ,j
‖ai‖Ai

‖ϕj‖B∗j
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Bifibrations of polycategories

Example: Banach spaces

Forgetful functor: FBan1 → FVect

Proposition

FBan1 has all cartesian liftings of universal polymaps.
So it is ∗-representable.

Proposition

‖u‖A⊗B = inf
u=

∑
i
ai⊗bi

∑
i ,j
‖ai‖A‖bi‖B the projective crossnorm

‖u‖A`B = sup
‖ϕ‖A∗ ,‖ψ‖B∗≤1

|(ϕ⊗ ψ)(u)| the injective crossnorm
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Conclusion

Conclusion

We have presented a fibrational perspective on models of classical MLL:

∗-autonomous categories as polycategories bifibred over 1

used to construct liftings of ∗-autonomous structure along a functor

In the paper we also discuss a collection of polycategorical Grothendieck
correspondences, and relate this to Shulman’s recent analysis of
∗-autonomous categories as Frobenius pseudomonoids in MAdj.

Future work:

Finding other interesting examples of polycategorical bifibrations

Building polarized models

Specialising to the base polycategory being compact closed
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Conclusion

Summary table

classical MLL ⊗, 1 `,⊥ ∗
*-autonomous monoidal monoidal monoidal

category structure structure duality

Representable out-universal in-universal in-universal/out-universal
polycategory objects objects object

Bifibred pushforwards pullbacks pullback/pushforward
polycategory

Frobenius pseudomonoid multiplication comultiplication unit/co-unit
in MAdj + unit + counit + adj

Table: Models of classical MLL
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Bonus round: Polycategorical Grothendieck construction

Distributors

Warning

In the following 2-polycategories are weak when strictness is not explicitly
mentioned. We will assume some of the theory of 2-polycategories.

Definition

There is a 2-polycategory Dist induced by the compact closed structure of
the bicategory of distributors/profunctors/modules.
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Bonus round: Polycategorical Grothendieck construction

Multivariable adjunctions

Definition

A multivariable adjunction is a distributor that is representable in each of
its variable.

Example: multivariable adjunction A,B → C ,D

Four functors:

fA : C × D × Bop → A

fB : Aop × C × D → B

fC : A× B × Dop → C

fD : C op × A× B → D

such that for any a ∈ A, b ∈ B, c ∈ C , d ∈ D
A(a, fA(c, d , b)) ' B(b, fB(a, c , d)) ' C (c, fC (a, b, d)) ' D(d , fD(c, a, b))
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Bonus round: Polycategorical Grothendieck construction

MAdj

Definition

There is a 2-polycategory MAdj with polymaps the multivariable
adjunctions.

Proposition

MAdj is a ∗-polycategory with duality (−)∗ = (−)op.

Example

A (1, 1)-adjunction A→ B is an adjunction.

A (0, 1)-adjunction · → A is an object of A (representable presheaf)

A (1, 0)-adjunction A→ · is an object of A (representable copresheaf)

A (0, 0)-adjunction is a set
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Bonus round: Polycategorical Grothendieck construction

Fibres of a poly-refinement system

p : E → B a poly-refinement system

Proposition

There is a lax normal functor ∂p : Bop → Dist sending an object to its
fibre and a morphism f to the distributor ∂p(f ) consisting of the sets
∂p(f )(Π; Σ) = {ϕ : Π =⇒

f
Σ} acted on by precomposition and

postcomposition.

∂p(f )(Π1,−,Π2; Σ) = Hom(−,pull[f ](Π1 Π2; Σ))
∂p(f )(Π; Σ1,−,Σ2) = Hom(push〈f 〉(Π; Σ1 Σ2),−)

Proposition

If p bifibration then this is a pseudofunctor ∂p : Bop →MAdj.
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Bonus round: Polycategorical Grothendieck construction

Polycategorical Grothendieck construction

F : Bop → Dist lax normal functor

Definition∫
F is the polycategory with objects pairs (A,R) with A ∈ B and R ∈ F (A)

and polymaps (f , ϕ) : (Γ,Π)→ (∆,Σ) with f ∈ B and ϕ ∈ F (f )(Π,Σ).
There is a first projection functor π1 :

∫
F → B.

F : Bop →MAdj pseudofunctor

Proposition

π1 :
∫
F → B is a bifibration.
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Bonus round: Polycategorical Grothendieck construction

Polycategorical Grothendieck correspondence

The construction ∂ and
∫

are inverse to each other.

Theorem

This establishes correspondences between

Poly-refinement system E → B and lax normal functors Bop → Dist

Bifibrations E → B and pseudofunctors Bop →MAdj
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Bonus round: Polycategorical Grothendieck construction

Frobenius pseudomonoid

Definition

Frobenius pseudomonoid in 2-polycategory P: object A equipped with
unique polymaps (m, n)A : Am → An for each m, n ∈ N such that
(1, 1)A ' idA and these polymaps are stable under composition up to iso.

Proposition

Equivalently a Frobenius pseudomonoid is a pseudofunctor 1→ P.

Theorem (Shulman)

There is a correspondence between Frobenius pseudomonoid in MAdj and
∗-autonomous categories.
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