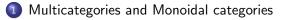
Models of Classical Linear Logic via Bifibrations of Polycategories

N. Blanco and N. Zeilberger

School of Computer Science University of Birmingham, UK

SYCO5, September 2019

Outline



- Opfibration of Multicategories
- Olycategories and Linearly Distributive Categories
- ④ Bifibration of polycategories

- - E - N

Outline

Multicategories and Monoidal categories

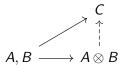
N. Blanco and N. Zeilberger (School of ComModels of Classical Linear Logic via Bifibratio 💦 SYCO5, September 2019 3 / 27

(日) (同) (日) (日) (日)

3

Tensor product of vector spaces

• In linear algebra: universal property



- ullet In category theory as a structure: a monoidal product \otimes
- Universal property of tensor product needs many-to-one maps
- Category with many-to-one maps \Rightarrow Multicategory

Multicategory¹

Definition

A multicategory \mathcal{M} has:

- A collection of objects
- Γ finite list of objects and A objects
 Set of multimorphisms M(Γ; A)
- Identities $id_A : A \to A$
- Composition: $\frac{f: \Gamma \to A \quad g: \Gamma_1, A, \Gamma_2 \to B}{g \circ_i f: \Gamma_1, \Gamma, \Gamma_2 \to B}$
- With usual unitality and associativity and: interchange law: (g ∘ f₁) ∘ f₂ = (g ∘ f₂) ∘ f₁ where f₁ and f₂ are composed in two different inputs of g

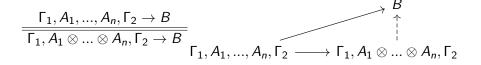
Representable multicategory

Definition

A multimorphism $u : \Gamma \to A$ is *universal* if any multimap $f : \Gamma_1, \Gamma, \Gamma_2 \to B$ factors uniquely through u.

Definition

A multicategory is *representable* if for any finite list $\Gamma = (A_i)$ there is a universal map $\Gamma \to \bigotimes A_i$.



A B F A B F

Representable multicategories and Monoidal categories

Let $\ensuremath{\mathcal{C}}$ be a monoidal category.

There is an underlying representable multicategory $\overrightarrow{\mathcal{C}}$ whose:

- \bullet objects are the objects of ${\cal C}$
- multimorphisms $f : A_1, ..., A_n \to B$ are morphisms
 - $f: A_1 \otimes ... \otimes A_n \to B$ in \mathcal{C}

Conversely any representable multicategory is the underlying multicategory of some monoidal category.

Finite dimensional vector spaces and multilinear maps

Theorem

The multicategory $\overrightarrow{\mathbf{FVect}}$ of finite dimensional vector spaces and multilinear maps is representable.

Definition

For normed vect. sp.
$$(A_i, \| - \|_{A_i}), (B, \| - \|_B), f : A_1, ..., A_n \to B$$
 is *short/contractive* if for any $\vec{x} = x_1, ..., x_n, \|f(\vec{x})\|_B \leq \prod \|x_i\|_{A_i}$

Theorem

The multicategory $\overline{FBan'_1}$ of finite dimensional Banach spaces and short multilinear maps is representable.

Its tensor product is equipped with the projective crossnorm.

Projective crossnorm²

Definition

Given two normed vector spaces $(A, \| - \|_A)$ and $(B, \| - \|_B)$ we defined a normed on $A \otimes B$ called the *projective crossnorm* as follows:

$$\|u\|_{A\otimes B} = \inf_{\substack{u=\sum_i a_i\otimes b_i}} \sum_i \|a_i\|_A \|b_i\|_B$$

Proposition

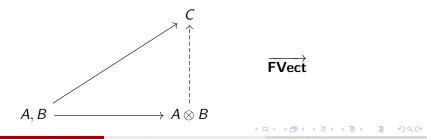
Any (well-behaved) norm $\|-\|$ on $A \otimes B$ is smaller than the projective one:

$$\|u\| \leq \|u\|_{A\otimes B}, \ \forall u \in A \otimes B$$

How does this related to the fact that it is the norm of the tensor product?

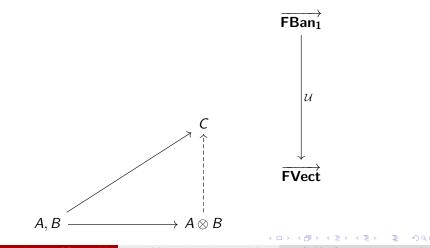
²Raymond A. Ryan. Introduction to Tensor Products of Banach Spaces. ≥ 2002. N. Blanco and N. Zeilberger (School of Con Models of Classical Linear Logic via Bifibratio SYCO5, September 2019 8 / 27

Lifting the tensor product of $\overrightarrow{\mathsf{FVect}}$ to $\overrightarrow{\mathsf{FBan}_1}$



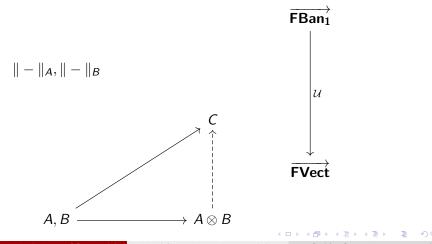
Multicategories and Monoidal categories

Lifting the tensor product of $\overrightarrow{\mathsf{FVect}}$ to $\overrightarrow{\mathsf{FBan}_1}$



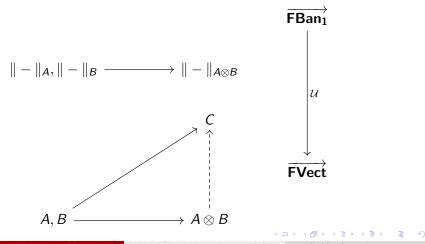
Multicategories and Monoidal categories

Lifting the tensor product of $\overrightarrow{\mathsf{FVect}}$ to $\overrightarrow{\mathsf{FBan}_1}$

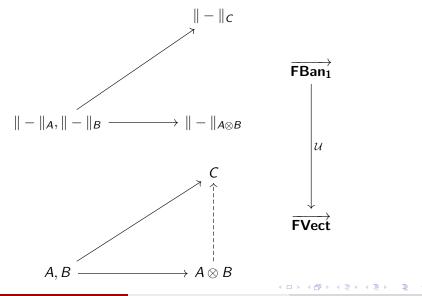


Multicategories and Monoidal categories

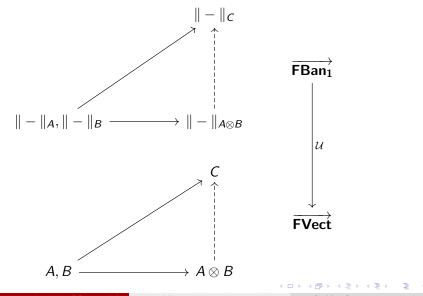
Lifting the tensor product of $\overrightarrow{\mathsf{FVect}}$ to $\overrightarrow{\mathsf{FBan}_1}$



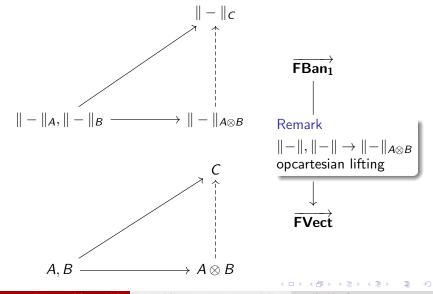
Lifting the tensor product of $\overrightarrow{\mathsf{FVect}}$ to $\overrightarrow{\mathsf{FBan}_1}$



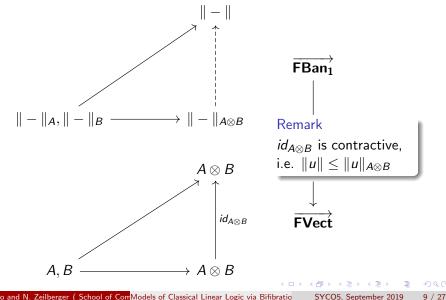
Lifting the tensor product of $\overrightarrow{\mathsf{FVect}}$ to $\overrightarrow{\mathsf{FBan}_1}$



Lifting the tensor product of \overrightarrow{FVect} to $\overrightarrow{FBan_1}$



Lifting the tensor product of \overrightarrow{FVect} to $\overrightarrow{FBan_1}$



Outline

Opfibration of Multicategories

N. Blanco and N. Zeilberger (School of ComModels of Classical Linear Logic via Bifibratio SYCO5, September 2019 10 / 27

(日) (同) (日) (日) (日)

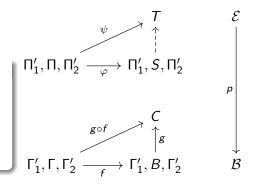
æ

Opcartesian multimorphism³

 $p: \mathcal{E} \to \mathcal{B}$ functor between multicategories

Definition

 $\varphi: \Pi \to S$ opcartesian if for any multimorphism $\psi: \Pi'_1, \Pi, \Pi'_2 \to T$ lying over $g \circ f$ there is a unique multimorphism $\xi: \Pi'_1, S, \Pi'_2 \to T$ over g such that $\psi = \xi \circ \varphi$.



³Claudio Hermida. "Fibrations for abstract multicategories". An: (2004) ≥ → ≥ ∽へへ N. Blanco and N. Zeilberger (School of Con^Models of Classical Linear Logic via Bifibratio SYCO5, September 2019 10 / 27

Opfibration of multicategories

Definition

A functor $p: \mathcal{E} \to \mathcal{B}$ between multicategories is an *opfibration* if for any multimap $f: \Gamma \to B$ and any Π over Γ there is an object $push_f(\Pi)$ over B and an opcartesian multimorphism $\Pi \to push_f(\Pi)$ lying over f. $push_f(\Pi)$ is called the pushforward of Π along f.

Π –

$$\Gamma \xrightarrow[f]{f} B$$

Opfibrations lift logical conjunction

Theorem

A multicategory opfibred over a representable one is representable.

N. Blanco and N. Zeilberger (School of Con Models of Classical Linear Logic via Bifibratio SYCO5, September 2019 12 / 27

()

- 一司

Opfibrations lift logical conjunction

Theorem

A multicategory opfibred over a representable one is representable.

Unfortunately

The forgetful functor $\mathcal{U}: \overrightarrow{\mathsf{FBan}_1} \to \overrightarrow{\mathsf{FVect}}$ is **not** an opfibration.

However it has "enough" opcartesian multimorphism to lift the universal property of \otimes .

Opfibrations lift logical conjunction

Theorem

A multicategory opfibred over a representable one is representable.

Unfortunately

The forgetful functor $\mathcal{U}: \overrightarrow{\mathsf{FBan}_1} \to \overrightarrow{\mathsf{FVect}}$ is **not** an opfibration.

Proposition

A linear map f (i.e a unary multimorphism in \overrightarrow{FVect}) has opcartesian liftings in $\overrightarrow{FBan_1}$ if it is surjective.

However it has "enough" opcartesian multimorphism to lift the universal property of $\otimes.$

4 E N 4 E N

Fibrational properties of \otimes

Proposition

Opcartesian lifting of universal multimorphisms are universal.

Conceptually this comes from the following fact:

E 5 4 E 5

Fibrational properties of \otimes

Proposition

Opcartesian lifting of universal multimorphisms are universal.

Conceptually this comes from the following fact:

Theorem

A multicategory \mathcal{P} is a representable iff $!: \mathcal{P} \to \mathbb{1}$ is an opfibration. A multimorphism is universal if it is !-opcartesian.

Definition

The terminal multicategory $1\$ has:

- one object *
- one multimorphism $\underline{n}: *^n \to *$ for each arity n

(B)

Fibrational properties of \otimes

Proposition

Opcartesian lifting of opcartesian multimorphisms are opcartesian.

Conceptually this comes from the following fact:

Theorem

A multicategory \mathcal{P} is a representable iff $!: \mathcal{P} \to \mathbb{1}$ is an opfibration. A multimorphism is universal if it is !-opcartesian.

Definition

The terminal multicategory $1\$ has:

- one object *
- one multimorphism $\underline{n}: *^n \to *$ for each arity n

Intuitionistic Multiplicative Linear Logic

The multiplicative conjunction \otimes can be seen as a:

- ullet structure on a category: monoidal product \otimes
- ullet universal property in a multicategory: universal multimorphism in \otimes
- fibrational property in a multicategory: \otimes as a pushforward

We get something similar for $-\infty$:

Multicategories bifibred over $\mathbbm{1} \leftrightarrow$ Monoidal closed categories

4 E N 4 E N

Classical Multiplicative Linear Logic

- FVect and FBan1 linearly distributive categories
- $\bullet\,$ Two monoidal products $\otimes\,$ and $\,\,\%\,$ interacting well
- $\bullet~\otimes$ conjunction and $\,^{\mathscr{D}}$ disjunction
- Models of Multiplicative Linear Logic without Negation
- In **FVect**, $\mathfrak{P} = \otimes$
- In $FBan_1$, \mathfrak{P} is the tensor product with the injective crossnorm.
- Sequents for classical MLL are many-to-many.
- We need maps $A \ \mathfrak{P} B \to A, B$ for the universal property of \mathfrak{P}

イロッ イボッ イヨッ イヨッ 二日

Outline

Polycategories and Linearly Distributive Categories

N. Blanco and N. Zeilberger (School of ComModels of Classical Linear Logic via Bifibratio SYCO5, September 2019 16 / 27

(日) (同) (日) (日) (日)

3

Polycategories⁴

Definition

- A polycategory \mathcal{P} has:
 - A collection of objects
 - For Γ, Δ finite list of objects, a set of polymorphisms $\mathcal{P}(\Gamma; \Delta)$

• With unitality, associativity and two interchange laws

⁴M.E. Szabo. "Polycategories". In: (1975). N. Blanco and N. Zeilberger (School of Cont Models of Classical Linear Logic via Bifibratio SYCO5, September 2019 16 / 27

Two-tensor polycategory

Definition

A polymorphism $u: \Gamma \to \Delta_1, A, \Delta_2$ is *universal in its i-th variable* if any polymorphism $f: \Gamma_1, \Gamma, \Gamma_2 \to \Delta_1, \Delta, \Delta_2$ factors uniquely through u.

Definition

A two-tensor polycategory is a polycategory such that for any finite list $\Gamma = (A_i)$ there are a universal polymap (in its only output) $\Gamma \to \bigotimes A_i$ and a co-universal polymap (in its only input) $\Im A_i \to \Gamma$.

$$\frac{\Gamma_1, A_1, \dots, A_n, \Gamma_2 \to \Delta}{\Gamma_1, A_1 \otimes \dots \otimes A_n, \Gamma_2 \to \Delta}$$

N. Blanco and N. Zeilberger (School of ComModels of Classical Linear Logic via Bifibratio 💦 SYCO5, September 2019 👘 17 / 27

Two-tensor polycategory

Definition

A polymorphism $c : \Gamma_1, A, \Gamma_2 \to \Delta$ is *co-universal in its i-th variable* if for any polymorphism $f : \Gamma_1, \Gamma, \Gamma_2 \to \Delta_1, \Delta, \Delta_2$ we have a unique g with $f = c_i \circ_j g$.

Definition

A two-tensor polycategory is a polycategory such that for any finite list $\Gamma = (A_i)$ there are a universal polymap (in its only output) $\Gamma \to \bigotimes A_i$ and a co-universal polymap (in its only input) $\Im A_i \to \Gamma$.

$$\frac{\Gamma \to \Delta_1, A_1, \dots, A_n, \Delta_2}{\Gamma \to \Delta_1, A_1 \, \Im \, \dots \, \Im \, A_n, \Delta_2}$$

(B)

Two-tensor polycategories and Linearly distributive ${\rm categories}^5$

Let \mathcal{C} be a linearly distributive category.

There is an underlying two-tensor polycategory $\overleftarrow{\mathcal{C}}$ whose:

- \bullet objects are the objects of ${\cal C}$
- polymorphisms $f : A_1, ..., A_m \rightarrow B_1, ..., B_n$ are morphisms
 - $f: A_1 \otimes ... \otimes A_m \to B_1 \ \mathfrak{N} \ ... \ \mathfrak{N} \ B_n$ in \mathcal{C}

Conversely any two-tensor polycategory is the underlying polycategory of a linearly distributive category.

⁵J.R.B. Cockett and R.A.G. Seely. "Weakly distributive categories" = $\ln = (199\frac{7}{2})$. $\sim \sim \sim$ N. Blanco and N. Zeilberger (School of Con Models of Classical Linear Logic via Bifibratio SYCO5, September 2019 18 / 27

Polycategories of f.d. vector spaces

Theorem

There are two-tensor polycategories $\overleftarrow{\mathsf{FVect}}$ and $\overleftarrow{\mathsf{FBan}_1}$ of finite dimensional vector spaces/Banach spaces.

This follows from **FVect** and **FBan**₁ being linearly distributive.

Polycategories of f.d. vector spaces

Theorem

There are two-tensor polycategories $\overleftarrow{\mathsf{FVect}}$ and $\overleftarrow{\mathsf{FBan}_1}$ of finite dimensional vector spaces/Banach spaces.

This follows from **FVect** and **FBan1** being linearly distributive.

Remark

It is possible to define these polycategories without using \mathfrak{P} by taking a polymorphism $f: A_1, ..., A_m \to B_1, ..., B_n$ to be a (short) multilinear morphism $f: A_1 \otimes ... \otimes A_m \otimes B_1^* \otimes ... \otimes B_n^* \to \mathbb{K}$.

Injective crossnorm

Definition

Given two normed vector spaces $(A, \|-\|_A)$ and $(B, \|-\|_B)$ we can define a norm on $A \otimes B$ called the *injective crossnorm* as follows:

$$\|u\|_{A\mathfrak{B}} := \sup_{\|arphi\|_{A^*}, \|\psi\|_{B^*} \leq 1} |(arphi \otimes \psi)(u)|$$

Proposition

For any (well-behaved) norm $\|-\|$ on $A \otimes B$ we have

$$\|x\|_{A^{\mathfrak{B}}B} \le \|x\| \le \|x\|_{A \otimes B}$$

N. Blanco and N. Zeilberger (School of ComModels of Classical Linear Logic via Bifibratio SYCO5, September 2019 20 / 27

A B M A B M

Bifibration of polycategories

N. Blanco and N. Zeilberger (School of ComModels of Classical Linear Logic via Bifibratio SYCO5, September 2019 21 / 27

・ロン ・四 ・ ・ ヨン ・ ヨン

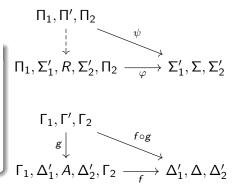
æ

Cartesian polymorphism

 $p: \mathcal{E} \rightarrow \mathcal{B}$ between polycategories

Definition

$$\begin{split} \varphi &: \Pi_1, R, \Pi_2 \to \Sigma \text{ cartesian in its} \\ i\text{-th variable} \text{ if any polymorphism} \\ \psi &: \Pi_1, \Pi', \Pi_2 \to \Sigma_1', \Sigma, \Sigma_2' \text{ lying over} \\ f_i \circ_j g \text{ there is a unique} \\ \text{polymorphism } \xi &: \Pi' \to \Sigma_1', R, \Sigma_2' \\ \text{over } g \text{ such that } \psi &= \varphi_i \circ_j \xi. \end{split}$$



(4) (E) (A) (E) (A)

3

Fibration of polycategories

Definition

A functor $p: \mathcal{E} \to \mathcal{B}$ between polycategories is a *fibration* if for any polymap $f: \Gamma_1, A, \Gamma_2 \to \Delta$, any Π_i over Γ_i and any Σ over Δ there is an object $pull_f^k(\Pi_1, \Pi_2; \Sigma)$ over A and a cartesian polymorphism $\Pi_1, pull_f^k(\Pi_1, \Pi_2; \Sigma), \Pi_2 \to \Sigma$ lying over f. $pull_f^k(\Pi_1, \Pi_2; \Sigma)$ is called the pullback of Σ along f in context Π_1, Π_2 .

$$\Pi_1, -, \Pi_2$$
 Σ

$$\Gamma_1, A, \Gamma_2 \xrightarrow{f} \Delta$$

Opcartesian polymorphism

Definition

 $\begin{array}{l} \varphi:\Pi_1\to \Sigma_1,S,\Sigma_2 \mbox{ opcartesian in its}\\ i\text{-th variable} \mbox{ if for any polymorphism}\\ \psi:\Pi_1',\Pi,\Pi_2'\to \Sigma_1,\Sigma',\Sigma_2 \mbox{ lying over}\\ g_j\circ_i f \mbox{ there is a unique}\\ polymorphism \mbox{ } \xi:\Pi_1',S,\Pi_2'\to \Sigma \mbox{ over}\\ g \mbox{ such that } \psi=\xi_j\circ_i \varphi. \end{array}$

$$\begin{array}{c} \Sigma_{1}, \Sigma', \Sigma_{2} \\ \psi & \uparrow \\ & \uparrow \\ \Pi_{1}', \Pi, \Pi_{2}' \xrightarrow{\varphi} \Pi_{1}', \Sigma_{1}, S, \Sigma_{2}, \Pi_{2}' \\ & & \Delta_{1}, \Delta', \Delta_{2} \\ & & \Delta_{1}, \Delta', \Delta_{2} \\ & & & \int_{g} \\ \Gamma_{1}', \Gamma, \Gamma_{2}' \xrightarrow{g \circ f} \Gamma_{1}', \Delta_{1}, B, \Delta_{2}, \Gamma_{2}' \end{array}$$

N. Blanco and N. Zeilberger (School of ComModels of Classical Linear Logic via Bifibratio SYCO5, September 2019 23 / 27

Opfibration of polycategories

Definition

A functor $p: \mathcal{E} \to \mathcal{B}$ between polycategories is an *opfibration* if for any polymap $f: \Gamma \to \Delta_1, B, \Delta_2$, any Π over Γ and any Σ_i over Δ_i there is an object $push_f^k(\Pi; \Sigma_1, \Sigma_2)$ over B and a cartesian polymorphism $\Pi \to \Sigma_1, push_f^k(\Pi; \Sigma_1, \Sigma_2), \Sigma_2$ lying over f. $push_f^k(\Pi; \Sigma_1, \Sigma_2)$ is called the pushforward of Π along f in context Σ_1, Σ_2 .

$$\Pi_1$$
 $\Sigma_1, -, \Sigma_2$

$$\Gamma \longrightarrow_{f} \Delta_{1}, B, \Delta_{2}$$

N. Blanco and N. Zeilberger (School of ComModels of Classical Linear Logic via Bifibratio SYCO5, September 2019 24 / 27

Bifibrations lift logical properties

Theorem

A polycategory bifibred over a two-tensor polycategory is a two-tensor polycategory.

- - E - N

Bifibrations lift logical properties

Theorem

A polycategory bifibred over a two-tensor polycategory is a two-tensor polycategory.

Unfortunately

The forgetful functor $\mathcal{U}: \overleftarrow{\mathsf{FBan}_1} \to \overleftarrow{\mathsf{FVect}}$ is **not** a bifibration.

However it has "enough" cartesian and opcartesian polymorphism to lift the logical properties.

Bifibrations lift logical properties

Theorem

A polycategory bifibred over a two-tensor polycategory is a two-tensor polycategory.

Unfortunately

The forgetful functor $\mathcal{U}: \overleftarrow{\mathsf{FBan}_1} \to \overleftarrow{\mathsf{FVect}}$ is **not** a bifibration.

Proposition

A linear map f (i.e a unary polymorphism in **FVect**) has cartesian (resp. opcartesian) liftings in **FBan**₁ if it is injective (resp. surjective).

However it has "enough" cartesian and opcartesian polymorphism to lift the logical properties.

A B < A B <</p>

Fibrational properties of \otimes and $\, \mathfrak{N}$

Proposition

Opcartesian lifting of universal polymorphisms are universal.

Proposition

Cartesian lifting of co-universal polymorphisms are co-universal.

Conceptually this comes from the following fact:

E 6 4 E 6

Fibrational properties of \otimes and \mathscr{B}

Proposition

Opcartesian lifting of universal polymorphisms are universal.

Proposition

Cartesian lifting of co-universal polymorphisms are co-universal.

Conceptually this comes from the following fact:

Theorem

A polycategory \mathcal{P} is a two-tensor polycategory iff $!: \mathcal{P} \to \mathbb{1}$ is a bifibration. A polymorphism is universal if it is !-opcartesian and co-universal if it is !-cartesian.

(B)

Fibrational properties of \otimes and \mathscr{B}

Proposition

Opcartesian lifting of opcartesian polymorphisms are opcartesian.

Proposition

Cartesian lifting of cartesian polymorphisms are cartesian.

Conceptually this comes from the following fact:

Theorem

A polycategory \mathcal{P} is a two-tensor polycategory iff $!: \mathcal{P} \to \mathbb{1}$ is a bifibration. A polymorphism is universal if it is !-opcartesian and co-universal if it is !-cartesian.

(B)

Conclusion

Three different ways of thinking about logical properties:

- As structures on categories
- As universal properties in polycategories
- As fibrational properties in polycategories

Further work:

- Finding other examples: Higher-order causal processes⁶
- Adding the *: some subtilities but possible
- Additive connectors:
 - $\bullet~$ biproducts $\oplus~$ in FVect
 - $\bullet \mbox{ products } \|-\|_\infty$ and coproducts $\|-\|_1$ in \mbox{FBan}_1

⁶Aleks Kissinger and Sander Uijlen. "A categorical semantics for causal structure". In: (2017).

27 / 27

N. Blanco and N. Zeilberger (School of ComModels of Classical Linear Logic via Bifibratio SYCO5, September 2019