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Multicategories and Monoidal categories

Tensor product of vector spaces

In linear algebra: universal property

C

A,B A⊗ B

In category theory as a structure: a monoidal product ⊗
Universal property of tensor product needs many-to-one maps

Category with many-to-one maps ⇒ Multicategory
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Multicategories and Monoidal categories

Multicategory1

Definition

A multicategory M has:

A collection of objects

Γ finite list of objects and A objects
Set of multimorphisms M(Γ;A)

Identities idA : A→ A

Composition:
f : Γ→ A g : Γ1,A, Γ2 → B

g ◦i f : Γ1, Γ, Γ2 → B
With usual unitality and associativity and:
interchange law: (g ◦ f1) ◦ f2 = (g ◦ f2) ◦ f1
where f1 and f2 are composed in two different inputs of g

1Tom Leinster. Higher Operads, Higher Categories. 2004.
N. Blanco and N. Zeilberger ( School of Computer Science University of Birmingham, UK )Models of Classical Linear Logic via Bifibrations of PolycategoriesSYCO5, September 2019 4 / 27



Multicategories and Monoidal categories

Representable multicategory

Definition

A multimorphism u : Γ→ A is universal if any multimap f : Γ1, Γ, Γ2 → B
factors uniquely through u.

Definition

A multicategory is representable if for any finite list Γ = (Ai ) there is a
universal map Γ→

⊗
Ai .

Γ1,A1, ...,An, Γ2 → B

Γ1,A1 ⊗ ...⊗ An, Γ2 → B

B

Γ1,A1, ...,An, Γ2 Γ1,A1 ⊗ ...⊗ An, Γ2
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Multicategories and Monoidal categories

Representable multicategories and Monoidal categories

Let C be a monoidal category.

There is an underlying representable multicategory
−→
C whose:

objects are the objects of C
multimorphisms f : A1, ...,An → B are morphisms
f : A1 ⊗ ...⊗ An → B in C

Conversely any representable multicategory is the underlying multicategory
of some monoidal category.
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Multicategories and Monoidal categories

Finite dimensional vector spaces and multilinear maps

Theorem

The multicategory
−−−−→
FVect of finite dimensional vector spaces and

multilinear maps is representable.

Definition

For normed vect. sp. (Ai , ‖ − ‖Ai
), (B, ‖ − ‖B), f : A1, ...,An → B is

short/contractive if for any ~x = x1, ..., xn, ‖f (~x)‖B ≤
∏
i
‖xi‖Ai

Theorem

The multicategory
−−−−→
FBan1 of finite dimensional Banach spaces and short

multilinear maps is representable.
Its tensor product is equipped with the projective crossnorm.
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Multicategories and Monoidal categories

Projective crossnorm2

Definition

Given two normed vector spaces (A, ‖ − ‖A) and (B, ‖ − ‖B) we defined a
normed on A⊗ B called the projective crossnorm as follows:

‖u‖A⊗B = inf
u=

∑
i
ai⊗bi

∑
i

‖ai‖A‖bi‖B

Proposition

Any (well-behaved) norm ‖−‖ on A⊗B is smaller than the projective one:

‖u‖ ≤ ‖u‖A⊗B , ∀u ∈ A⊗ B

How does this related to the fact that it is the norm of the tensor product?

2Raymond A. Ryan. Introduction to Tensor Products of Banach Spaces. 2002.
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Multicategories and Monoidal categories

Lifting the tensor product of
−−−−→
FVect to

−−−−→
FBan1

‖ − ‖C

−−−−→
FBan1

‖ − ‖A, ‖ − ‖B ‖ − ‖A⊗B

C

−−−−→
FVect

A,B A⊗ B

U

Remark

‖−‖, ‖−‖ → ‖−‖A⊗B
opcartesian lifting
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Multicategories and Monoidal categories

Lifting the tensor product of
−−−−→
FVect to

−−−−→
FBan1

‖ − ‖

−−−−→
FBan1

‖ − ‖A, ‖ − ‖B ‖ − ‖A⊗B

A⊗ B

−−−−→
FVect

A,B A⊗ B

U

idA⊗B

Remark

idA⊗B is contractive,
i.e. ‖u‖ ≤ ‖u‖A⊗B
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Opfibration of Multicategories

Outline

2 Opfibration of Multicategories
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Opfibration of Multicategories

Opcartesian multimorphism3

p : E → B functor between
multicategories

Definition

ϕ : Π→ S opcartesian if for any
multimorphism ψ : Π′1,Π,Π

′
2 → T

lying over g ◦ f there is a unique
multimorphism ξ : Π′1,S ,Π

′
2 → T

over g such that ψ = ξ ◦ ϕ.

T E

Π′1,Π,Π
′
2 Π′1, S ,Π

′
2

C

Γ′1, Γ, Γ
′
2 Γ′1,B, Γ

′
2 B

p

ψ

ϕ

g◦f

f

g

3Claudio Hermida. “Fibrations for abstract multicategories”. In: (2004).
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Opfibration of Multicategories

Opfibration of multicategories

Definition

A functor p : E → B between multicategories is an opfibration if for any
multimap f : Γ→ B and any Π over Γ there is an object pushf (Π) over B
and an opcartesian multimorphism Π→ pushf (Π) lying over f .
pushf (Π) is called the pushforward of Π along f .

Π −

Γ B
f

N. Blanco and N. Zeilberger ( School of Computer Science University of Birmingham, UK )Models of Classical Linear Logic via Bifibrations of PolycategoriesSYCO5, September 2019 11 / 27



Opfibration of Multicategories

Opfibrations lift logical conjunction

Theorem

A multicategory opfibred over a representable one is representable.

Unfortunately

The forgetful functor U :
−−−−→
FBan1 →

−−−−→
FVect is not an opfibration.

However it has ”enough” opcartesian multimorphism to lift the universal
property of ⊗.
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The forgetful functor U :
−−−−→
FBan1 →

−−−−→
FVect is not an opfibration.

Proposition

A linear map f (i.e a unary multimorphism in
−−−−→
FVect) has opcartesian

liftings in
−−−−→
FBan1 if it is surjective.
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Opfibration of Multicategories

Fibrational properties of ⊗

Proposition

Opcartesian lifting of universal multimorphisms are universal.

Conceptually this comes from the following fact:

Theorem

A multicategory P is a representable iff ! : P → 1 is an opfibration.
A multimorphism is universal if it is !-opcartesian.

Definition

The terminal multicategory 1 has:

one object ∗
one multimorphism n : ∗n → ∗ for each arity n
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Opfibration of Multicategories

Intuitionistic Multiplicative Linear Logic

The multiplicative conjunction ⊗ can be seen as a:

structure on a category: monoidal product ⊗
universal property in a multicategory: universal multimorphism in ⊗
fibrational property in a multicategory: ⊗ as a pushforward

We get something similar for (:
Multicategories bifibred over 1 ↔ Monoidal closed categories
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Opfibration of Multicategories

Classical Multiplicative Linear Logic

FVect and FBan1 linearly distributive categories

Two monoidal products ⊗ and ` interacting well

⊗ conjunction and ` disjunction

Models of Multiplicative Linear Logic without Negation

In FVect, ` = ⊗
In FBan1, ` is the tensor product with the injective crossnorm.

Sequents for classical MLL are many-to-many.

We need maps A` B → A,B for the universal property of `
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Polycategories and Linearly Distributive Categories

Outline

3 Polycategories and Linearly Distributive Categories
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Polycategories and Linearly Distributive Categories

Polycategories4

Definition

A polycategory P has:

A collection of objects

For Γ,∆ finite list of objects, a set of polymorphisms P(Γ; ∆)

Identities idA : A→ A

Composition:
f : Γ→ ∆1,A,∆2 g : Γ1,A, Γ2 → ∆

g j ◦i f : Γ1, Γ, Γ2 → ∆1,∆,∆2

Planarity of ◦: (Γ1 = {} ∨∆1 = {}) ∧ (Γ2 = {} ∨∆2 = {})
With unitality, associativity and two interchange laws

4M.E. Szabo. “Polycategories”. In: (1975).
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Polycategories and Linearly Distributive Categories

Two-tensor polycategory

Definition

A polymorphism u : Γ→ ∆1,A,∆2 is universal in its i-th variable if any
polymorphism f : Γ1, Γ, Γ2 → ∆1,∆,∆2 factors uniquely through u.

Definition

A two-tensor polycategory is a polycategory such that for any finite list
Γ = (Ai ) there are a universal polymap (in its only output) Γ→

⊗
Ai and

a co-universal polymap (in its only input)
˙

Ai → Γ.

Γ1,A1, ...,An, Γ2 → ∆

Γ1,A1 ⊗ ...⊗ An, Γ2 → ∆
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Polycategories and Linearly Distributive Categories

Two-tensor polycategory

Definition

A polymorphism c : Γ1,A, Γ2 → ∆ is co-universal in its i-th variable if for
any polymorphism f : Γ1, Γ, Γ2 → ∆1,∆,∆2 we have a unique g with
f = c i ◦j g .

Definition

A two-tensor polycategory is a polycategory such that for any finite list
Γ = (Ai ) there are a universal polymap (in its only output) Γ→

⊗
Ai and

a co-universal polymap (in its only input)
˙

Ai → Γ.

Γ→ ∆1,A1, ...,An,∆2

Γ→ ∆1,A1 ` ...` An,∆2
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Polycategories and Linearly Distributive Categories

Two-tensor polycategories and Linearly distributive
categories5

Let C be a linearly distributive category.

There is an underlying two-tensor polycategory
←→
C whose:

objects are the objects of C
polymorphisms f : A1, ...,Am → B1, ...,Bn are morphisms
f : A1 ⊗ ...⊗ Am → B1 ` ...` Bn in C

Conversely any two-tensor polycategory is the underlying polycategory of a
linearly distributive category.

5J.R.B. Cockett and R.A.G. Seely. “Weakly distributive categories”. In: (1997).
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Polycategories and Linearly Distributive Categories

Polycategories of f.d. vector spaces

Theorem

There are two-tensor polycategories
←−−→
FVect and

←−−→
FBan1 of finite

dimensional vector spaces/Banach spaces.

This follows from FVect and FBan1 being linearly distributive.

Remark

It is possible to define these polycategories without using ` by taking a
polymorphism f : A1, ...,Am → B1, ...,Bn to be a (short) multilinear
morphism f : A1 ⊗ ...⊗ Am ⊗ B∗1 ⊗ ...⊗ B∗n → K.
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Polycategories and Linearly Distributive Categories

Injective crossnorm

Definition

Given two normed vector spaces (A, ‖ − ‖A) and (B, ‖ − ‖B) we can define
a norm on A⊗ B called the injective crossnorm as follows:

‖u‖A`B := sup
‖ϕ‖A∗ ,‖ψ‖B∗≤1

|(ϕ⊗ ψ)(u)|

Proposition

For any (well-behaved) norm ‖ − ‖ on A⊗ B we have

‖x‖A`B ≤ ‖x‖ ≤ ‖x‖A⊗B
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Bifibration of polycategories

Outline

4 Bifibration of polycategories
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Bifibration of polycategories

Cartesian polymorphism

p : E → B between polycategories

Definition

ϕ : Π1,R,Π2 → Σ cartesian in its
i-th variable if any polymorphism
ψ : Π1,Π

′,Π2 → Σ′1,Σ,Σ
′
2 lying over

f i ◦j g there is a unique
polymorphism ξ : Π′ → Σ′1,R,Σ

′
2

over g such that ψ = ϕi ◦j ξ.

Π1,Π
′,Π2

Π1,Σ
′
1,R,Σ

′
2,Π2 Σ′1,Σ,Σ

′
2

Γ1, Γ
′, Γ2

Γ1,∆
′
1,A,∆

′
2, Γ2 ∆′1,∆,∆

′
2

ψ

ϕ

g
f ◦g

f
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Bifibration of polycategories

Fibration of polycategories

Definition

A functor p : E → B between polycategories is a fibration if for any
polymap f : Γ1,A, Γ2 → ∆, any Πi over Γi and any Σ over ∆ there is an
object pullkf (Π1,Π2; Σ) over A and a cartesian polymorphism
Π1, pull

k
f (Π1,Π2; Σ),Π2 → Σ lying over f .

pullkf (Π1,Π2; Σ) is called the pullback of Σ along f in context Π1,Π2.

Π1,−,Π2 Σ

Γ1,A, Γ2 ∆
f
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Bifibration of polycategories

Opcartesian polymorphism

Definition

ϕ : Π1 → Σ1, S ,Σ2 opcartesian in its
i-th variable if for any polymorphism
ψ : Π′1,Π,Π

′
2 → Σ1,Σ

′,Σ2 lying over
g j ◦i f there is a unique
polymorphism ξ : Π′1,S ,Π

′
2 → Σ over

g such that ψ = ξj ◦i ϕ.

Σ1,Σ
′,Σ2

Π′1,Π,Π
′
2 Π′1,Σ1,S ,Σ2,Π

′
2

∆1,∆
′,∆2

Γ′1, Γ, Γ
′
2 Γ′1,∆1,B,∆2, Γ

′
2

ψ

ϕ

g◦f

f

g
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Bifibration of polycategories

Opfibration of polycategories

Definition

A functor p : E → B between polycategories is an opfibration if for any
polymap f : Γ→ ∆1,B,∆2, any Π over Γ and any Σi over ∆i there is an
object pushkf (Π; Σ1,Σ2) over B and a cartesian polymorphism
Π→ Σ1, push

k
f (Π; Σ1,Σ2),Σ2 lying over f .

pushkf (Π; Σ1,Σ2) is called the pushforward of Π along f in context Σ1,Σ2.

Π1 Σ1,−,Σ2

Γ ∆1,B,∆2f
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Bifibration of polycategories

Bifibrations lift logical properties

Theorem

A polycategory bifibred over a two-tensor polycategory is a two-tensor
polycategory.

Unfortunately

The forgetful functor U :
←−−→
FBan1 →

←−−→
FVect is not a bifibration.

However it has ”enough” cartesian and opcartesian polymorphism to lift
the logical properties.
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The forgetful functor U :
←−−→
FBan1 →

←−−→
FVect is not a bifibration.

Proposition

A linear map f (i.e a unary polymorphism in
←−−→
FVect) has cartesian (resp.

opcartesian) liftings in
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FBan1 if it is injective (resp. surjective).

However it has ”enough” cartesian and opcartesian polymorphism to lift
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Bifibration of polycategories

Fibrational properties of ⊗ and `

Proposition

Opcartesian lifting of universal polymorphisms are universal.

Proposition

Cartesian lifting of co-universal polymorphisms are co-universal.

Conceptually this comes from the following fact:
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Bifibration of polycategories

Fibrational properties of ⊗ and `

Proposition

Opcartesian lifting of universal polymorphisms are universal.

Proposition

Cartesian lifting of co-universal polymorphisms are co-universal.

Conceptually this comes from the following fact:

Theorem

A polycategory P is a two-tensor polycategory iff ! : P → 1 is a bifibration.
A polymorphism is universal if it is !-opcartesian and co-universal if it is
!-cartesian.
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Bifibration of polycategories

Fibrational properties of ⊗ and `

Proposition

Opcartesian lifting of opcartesian polymorphisms are opcartesian.

Proposition

Cartesian lifting of cartesian polymorphisms are cartesian.

Conceptually this comes from the following fact:

Theorem

A polycategory P is a two-tensor polycategory iff ! : P → 1 is a bifibration.
A polymorphism is universal if it is !-opcartesian and co-universal if it is
!-cartesian.
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Bifibration of polycategories

Conclusion

Three different ways of thinking about logical properties:

As structures on categories

As universal properties in polycategories

As fibrational properties in polycategories

Further work:

Finding other examples: Higher-order causal processes6

Adding the ∗: some subtilities but possible

Additive connectors:

biproducts ⊕ in FVect
products ‖ − ‖∞ and coproducts ‖ − ‖1 in FBan1

6Aleks Kissinger and Sander Uijlen. “A categorical semantics for causal structure”.
In: (2017).
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